
IIR Filter Designing Using Butterworth

Approximation

1 What is Butterworth Approximation?

1. Butterworth lowpas filter (LPF) was proposed by Butterworth in 1930 in his paper ti-
tled: On the Theory of Filter Amplifiers (Link: https://www.changpuak.ch/electronics/
downloads/On_the_Theory_of_Filter_Amplifiers.pdf).

2. He proposed that, any filter with its frequency response H(Ω) that satisfies the equation

|H(Ω)|2 =
1

1 +
Ä

Ω
Ωc

ä2N (1)

is a low pass filter with order N and cutoff frequency Ωc.

3. The Laplace transform H(s) follows the equation,

H(s)H(−s) =
1

1 +
Ä

s
jΩc

ä2N (2)

4. The roots of (2) are given by,

sk = Ωce
j π2

2k+1+N
N (3)

where, k = {0, 1, 2, . . . , 2N − 1}.

5. We consider the roots that lie in the left hand side of the jΩ axis which are obtained by
varying k from 0 to N − 1.

6. Therefore, the Butterworth low pass filter is given as,

H(s) =
1∏N−1

k=0 (s− sk)
(4)

where, sk is given by (3).

2 Bilinear Transform

The Butterworth approximation for analog filters can be used for construction digital IIR filters
using Bilinear transform. The Bilinear transform establishes a relationship between s (Laplace)
and z (Z transform). The mapping, given by Bilinear Transform, is given by the equation

s =
2

T

Å
1− z−1

1 + z−1

ã
(5)

1
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Where, T is the sampling duration. Due to this transformation, a non-linear mapping from Ω to
ω is obtained, defined by,

Ω =
2

T
tan

(ω
2

)
(6)

Or,

ω = 2 tan−1
(ΩT

2

)
(7)

The above effect is known as frequency warping. In order to remove this warping effect, the analog
frequencies are prewarped using the equation 6.

Point to be noted is that, for simplicity of calculations, we shall consider T = 2. Considering this
won’t cause any harm as the factor T/2 would get cancelled while doing Bilinear transformation.
Hence the equation (6) to be used for prewarping reduces to,

Ω = tan
(ω

2

)
(8)

And equation (7) reduces to,
ω = 2 tan−1 Ω (9)

The normalized denominator polynomials for different order N are as shown in Table 1.

Table 1: Denominator Polynomials for Butterworth Filters with Order N
Order
(N)

Denominator Polynomial

1 s+ 1
2 s2 + 1.414s+ 1
3 (s+ 1)(s2 + s+ 1)
4 (s2 + 0.766s+ 1)(s2 + 1.848s+ 1)
5 (s+ 1)(s2 + 0.618s+ 1)(s2 + 1.618s+ 1)
6 (s2 + 0.518s+ 1)(s2 + 1.414s+ 1)(s2 + 1.932s+ 1)
7 (s+ 1)(s2 + 0.445s+ 1)(s2 + 1.247s+ 1)(s2 + 1.802s+ 1)

3 Designing Digital IIR Low Pass Filter

Example: Design a digital low pass filter with specifications as:

−2dB ≤ |H(ω)| ≤ 0 = 0 ≤ ω ≤ 0.2π

|H(ω)| ≤ −15dB = 0.5π ≤ ω

• Step 0: Interpreting the specifications and prewarping the frequencies.

Following specifications can be observed:
Passband edge: ωp = 0.2π.
Stopband edge: ωs = 0.5π.
Passband attenuation: Ap = −2dB.
Stopband attenuation: As = −15dB.
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0
ωp = 0.2π ωs = 0.5π ω

|H(ω)|

Ap = −2 dB

As = −15 dB

−ωp−ωs

Figure 1: Low Pass Filter Specifications

Prewarping:

Ωp,LP = tan
(ωp

2

)
= tan

Å
0.2π

2

ã
= 0.3249

Ωs,LP = tan
(ωs

2

)
= tan

Å
0.5π

2

ã
= 1

• Step 1: Frequency Mapping For Obtaining Normalized LPF

Generally, for design of any IIR filter, the pass band edge of prototype LPF is mapped to 1
and corresponding changes that occur are as,

Ωmapped =
Ω

Ωp,LP
(10)

So, we have,

Ωp = 1

Ωs =
Ωs,LP

Ωp,LP
=

1

0.3249
= 3.0779

The mapping is as shown in Fig. 2
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0
Ωp,LP

Ωs,LP Ω

|H(Ω)|

Ap = −2 dB

As = −15 dB

−Ωp,LP−Ωs,LP

0
Ω

|H(Ω)|

Ap = −2 dB

As = −15 dB

1−Ωs = −Ωs,LP
Ωp,LP

Ωs =
Ωs,LP
Ωp,LP

−1

Figure 2: Mapping For Low Pass filter

• Step 2: Finding Order for the Prototype LPF
In order to find the LPF, first we need to find the order. The order can be found using the
formula:

N =
log
Ä

10|As|/10−1
10|Ap|/10−1

ä
2× log

Ä
Ωs
Ωp

ä
For considered example,

N =
log
Ä

1015/10−1
102/10−1

ä
2× log

(
3.0779

1

) = d1.76e = 2.

• Step 3: Find Normalized LPF Equation by Finding roots or Using Polynomial
Table

We have,
sk = ej

π
4 (2k+3) (11)

As N = 2, k = {0, 1}. So, we have,

so = ej
3π
4
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and
s1 = ej

5π
4

.

Using the roots, the value of H(s) can be found as,

H(s) =
1

(s− s0)(s− s1)

=
1

(s− ej 3π
4 )(s− ej 5π

4 )

H(s) =
1

s2 + 1.414s+ 1

• Step 4: Find the cutoff frequency.

The cutoff frequency of the filter is unknown and can be found as,

Ωc =
Ωs(

10|As|/10 − 1
) 1

2N

(12)

For, this example,

Ωc =
3.0779(

1015/10 − 1
) 1

4

= 1.3084 (13)

• Step 5: Find Denormalized Cutoff Frequency

This cutoff frequency is not the actual cutoff frequency but it is frequency when passband
edge is mapped to 1. So, the actual cutoff is given by,

Ωc,actual = Ωc × Ωp,LP = 1.3084× 0.3249 = 0.4251 (14)

• Step 6: Find Analog Filter

In order to find LPF, substitute s→ s
Ωc,actual

.

H(s)|s→ s
Ωc,actual

=
1Ä

s
Ωc,actual

ä2
+ 1.414

Ä
s

Ωc,actual

ä
+ 1

=
Ω2

c,actual

s2 + 1.414Ωc,actuals+ Ω2
c,actual

=
0.42512

s2 + 1.414× 0.4251s+ 0.42512

=
0.181

s2 + 0.601s+ 0.181

• Step 7: Find the equivalent IIR filter using Bilinear Transform
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Substitute s→ 1−z−1

1+z−1 .

H(z) =
0.181Ä

1−z−1

1+z−1

ä2
+ 0.601

Ä
1−z−1

1+z−1

ä
+ 0.181

=
0.181(1 + 2z−1 + z−2)

1.782− 1.638z−1 + 0.58z−2

H(z) =
0.102 + 0.204z−1 + 0.102z−2

1− 0.919z−1 + 0.325z−2

Final Digital Low pass IIR filter is:

H(z) =
0.102 + 0.204z−1 + 0.102z−2

1− 0.919z−1 + 0.325z−2
(15)

MATLAB Code

Following is the code snippet. The frequency response and the pole zero plot is as shown in Fig. 3
and 4.

1 clc;clear;close all;
2 %% Pass band and Stop Band edges
3 wp = 0.2;
4 ws = 0.5;
5

6 %% Pass band and Stop Band attenuation
7 Ap = 2;
8 As = 15;
9

10 %% Get Cutoff and Order
11 [N wc] = buttord(wp,ws,Ap,As);
12 disp(['Order:' num2str(N)]);
13 disp(['Cutoff: ' num2str(wc)]);
14

15 %% Value of Cutoff in Analog equivalent
16 WW = tan(wc.*pi/2);
17 disp(['Cutoff in Analog: ' num2str(WW)]);
18

19 %% Get Filter Coefficients
20 [b a] = butter(N,wc)
21 %% Get Pole−Zero Plot
22 figure;
23 zplane(b,a);
24 set(findall(gcf,'Type','line'),'LineWidth',2,'MarkerSize',40)
25

26 %% Get Frequency Response
27 figure;
28 freqz(b,a);
29 set(findall(gcf,'Type','line'),'LineWidth',2,'MarkerSize',40)
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Figure 3: Frequency response for LPF
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Figure 4: Pole zero for LPF

4 Designing Digital IIR High Pass Filter

Example: Design a high pass filter with following specifications:
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ωs = 0.2π

ωp = 0.5πAs = −15 dB

Ap = −2 dB

|H(ω)|

−ωp −ωs

Figure 5: High pass filter specification

• Step 0: Interpreting the specifications and prewarping the frequencies.

Following specifications can be observed:
Passband edge: ωp = 0.5π.
Stopband edge: ωs = 0.2π.
Passband attenuation: Ap = −2dB.
Stopband attenuation: As = −15dB.

Prewarping of frequencies:

Ωp,HP = tan
(ωp

2

)
= tan

Å
0.5π

2

ã
= 1

Ωs,HP = tan
(ωs

2

)
= tan

Å
0.2π

2

ã
= 0.3249

• Step 1: Frequency Mapping for Obtaining Normalized LPF

Butterworth approximation is for Lowpass filter only. If a high pass filter is to be constructed,
then it should be mapped to the low pass filter. A typical mapping for a high pass filter is
done as,

s→ 1

s
(16)

In frequency terms, it is obtained as,

ΩLP = − 1

ΩHP
(17)

It is a typical practice that the pass band edge of the lowpass filter is mapped to 1. For that,
the RHS of above equation us scaled by Ωp of the highpass. So, we have,

ΩLP = −Ωp,HP

ΩHP
(18)

The frequency mapping is as shown in Fig. 6.
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As = −15 dB

Ap = −2 dB

|H(Ω)|

0
Ω

Ap = −2 dB

As = −15 dB

|H(Ω)|

Ωs,HP = 0.3249

−Ωs,HP

Ωp,HP = 1

−Ωp,HP

1−1 Ωp,HP
Ωs,HP

−Ωp,HP
Ωs,HP

Ω

Figure 6: Frequency mapping for HPF

It can be observed that −Ωp is mapped to 1 of LPF and −Ωs is mapped to
Ωp
Ωs

. Therefore,
the mapped passband and stop band edge of the LPF with passband assumed at 1 is

Ωp = 1

Ωs =
Ωp,HP

Ωs,HP
=

1

0.3249
= 3.078

• Step 2: Finding Order for the Prototype LPF

The order can be found using the formula

N =
log
Ä

10|As|/10−1
10|Ap|/10−1

ä
2× log

Ä
Ωs
Ωp

ä
For considered example,

N =
log
Ä

1015/10−1
102/10−1

ä
2× log

(
0.3249

1

) = d1.76e = 2.
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• Step 3: Find Normalized LPF Equation by Finding roots or Using Polynomial
Table

We have,
sk = ej

π
4 (2k+3) (19)

As N = 2, k = {0, 1}. So, we have,

so = ej
3π
4

and
s1 = ej

5π
4

Using the roots, the value of H(s) can be found as,

H(s) =
1

(s− s0)(s− s1)

=
1

(s− ej 3π
4 )(s− ej 5π

4 )

H(s) =
1

s2 + 1.414s+ 1

• Step 4: Find the cutoff frequency.

It can be seen that, the mapped prototype LPF cannot have the cutoff frequency = 1. Hence,
there is a need to obtain the required cutoff frequency of the LPF using the formula,

Ωc =
Ωs(

10|As|/10 − 1
) 1

2N

(20)

For, this example,

Ωc =
3.078(

1015/10 − 1
) 1

4

= 1.3085 (21)

• Step 5: Find Denormalized Cutoff Frequency

This cutoff frequency is for the LPF mapped with passband edge to 1. The actual cutoff
frequency can be calculated as,

Ωc,actual =
Ωp,HP

Ωc
=

1

3.078
= 0.764 (22)

• Step 6: Find the Analog Filter

For mapping the LPF to HPF we need to substitute,

s→ Ωc,actual

s
(23)

to get the required HPF. Therefore, the HPF obtained is as shown below.

H(s) =
1

Ω2
c,actual

s2 + 1.414
Ωc,actual

s + 1

=
s2

s2 + 1.414Ωc,actuals+ Ω2
c,actual

=
s2

s2 + 1.081s+ 0.584
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• Step 7: Find the equivalent IIR filter using Bilinear Transform.

We have s→ 1−z−1

1+z−1 . Therefore,

H(z) =

Ä
1−z−1

1+z−1

ä2Ä
1−z−1

1+z−1

ä2
+ 1.081

Ä
1−z−1

1+z−1

ä
+ 0.584

=
1− 2z−1 + z−2

2.6657− 0.831z−1 + 0.5035z−2

=
0.375− 0.751z−1 + 0.375z−2

1− 0.3126z−1 + 0.1891z−2

The final High pass filter is obtained as,

H(z) =
0.375− 0.751z−1 + 0.375z−2

1− 0.3126z−1 + 0.1891z−2
(24)

MATLAB Code

Following is the code snippet. The frequency response and the pole zero plots are as shown in Fig.
7 and 8 respectively.

1 clc;clear;close all;
2 %% Pass band and Stop Band edges
3 wp = 0.5;
4 ws = 0.2;
5

6 %% Pass band and Stop Band attenuation
7 Ap = 2;
8 As = 15;
9

10 %% Get Cutoff and Order
11 [N wc] = buttord(wp,ws,Ap,As);
12 disp(['Order:' num2str(N)]);
13 disp(['Cutoff: ' num2str(wc)]);
14

15 %% Value of Cutoff in Analog equivalent
16 WW = tan(wc.*pi/2);
17 disp(['Cutoff in Analog: ' num2str(WW)]);
18

19 %% Get Filter Coefficients
20 [b a] = butter(N,wc,'high')
21 %% Get Pole−Zero Plot
22 figure;
23 zplane(b,a);
24 set(findall(gcf,'Type','line'),'LineWidth',2,'MarkerSize',40)
25

26 %% Get Frequency Response
27 figure;
28 freqz(b,a);
29 set(findall(gcf,'Type','line'),'LineWidth',2,'MarkerSize',40)
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Figure 7: Frequency response for HPF
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Figure 8: Pole zero for HPF

5 Designing Digital IIR Band Pass Filter

Example: Design the Digital IIR Bandpass filter with following secifications:

1. Lower stop band edge: 0.1π
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2. Lower pass band edge: 0.4π

3. Higher pass band edge: 0.6π

4. Higher stop band edge: 0.9π

5. Pass band attenuation: −3 dB

6. Stop band attenuation: −18 dB

ωpu = 0.6π ωsu = 0.9π ω

|H(ω)|

Ap = −3 dB

As = −18 dB

ωpl = 0.4π

ωsl = 0.1π

ωo

Figure 9: Band Pass Filter Specification

• Step 0: Interpreting the specifications and prewarping the frequencies

Ωsl = tan
(ωsl

2

)
= tan

Å
0.1π

2

ã
= tan(0.05π) = 0.15838

Ωpl = tan
(ωpl

2

)
= tan

Å
0.4π

2

ã
= tan(0.2π) = 0.72654

Ωpu = tan
(ωpu

2

)
= tan

Å
0.6π

2

ã
= tan(0.3π) = 1.37638

Ωsu = tan
(ωsu

2

)
= tan

Å
0.9π

2

ã
= tan(0.45π) = 6.31375

• Step 1: Frequency Mapping for Obtaining Normalized LPF

The bandpass filter is to be mapped to low pass filter in order to use Butterworth approxi-
mation. The mapping used is:

s→ s2 + Ω2
o

Bs
(25)

where, B = Ωpu − Ωpl and Ωo is the center frequency which is geometric mean of any two
frequencies on its either side that correspond to same magnitude. In general, the passband
frequencies are considered. Therefore, Ω2

o = Ωpu × Ωpl. The mapping reduces to,

s→ s2 + Ωpu × Ωpl

s(Ωpu − Ωpl)
(26)
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and the frequency mappings are given as,

ΩLP →
Ω2

BP − Ωpu × Ωpl

ΩBP (Ωpu − Ωpl)
(27)

where, ΩBP and ΩLP are the frequencies corresponding to BPF and prototype LPF respec-
tively. We have,

B = Ωpu − Ωpl = 0.64984

Ω2
o = Ωpu × Ωpl = 1

The pass band and stop band edges when mapped lead to,

Ωsl = 0.15838→ 0.158382 − 1

0.15838× 0.64984
= −9.4721

Ωpl = 0.72654→ 0.726542 − 1

0.72654× 0.64984
= −1

Ωpu = 1.37638→ 1.376382 − 1

1.37638× 0.64984
= 1

Ωsu = 6.31375→ 6.313752 − 1

6.31375× 0.64984
= 9.4721

Ω0 = 1→ 1− 1

1× 0.64984
= 0

The mapping can be easily visualized graphically as shown in Fig. 10.

tan(0.3π)
tan(0.45π)

|H(Ω)|

Ap = −3 dB

As = −18 dB

tan(0.2π)

tan(0.05π)

Ωo = 1

0

|H(Ω)|

Ap = −3 dB

As = −18 dB

−9.4721 −1 9.47211

Ωp

Ω

Ωs

Ω

Figure 10: Mapping for Bandpass Filter
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Therefore, the mapped frequencies for LPF can be obtained as,

Ωp = 1

Ωs =
Ω2

su − Ωpu × Ωpl

Ωsu(Ωpu − Ωpl)
= 9.4721

• Step 2: Finding Order for the Prototype LPF

The order can be found as,

N =
log
Ä

10|As|/10−1
10|Ap|/10−1

ä
2× log

Ä
Ωs
Ωp

ä
For considered example,

N =
log
Ä

1018/10−1
103/10−1

ä
2× log

(
9.4721

1

) = d0.9192e = 1.

• Step 3: Find Normalized LPF Equation by Finding roots or Using Polynomial
Table

From Table 1, we have

H(s) =
1

s+ 1
(28)

• Step 4: Find the cutoff frequency.

The cutoff frequency can be calculated as,

Ωc =
Ωs(

10|As|/10 − 1
) 1

2N

(29)

For this example,

Ωc =
9.4721(

1018/10 − 1
) 1

2

= 1.202 (30)

• Step 5: Find Denormalized Cutoff Frequency

The cutoff frequencies for the BPF can be found as,

Ωc1 = −ΩcB

2
+

1

2

√
Ω2

cB
2 + 4Ω2

o

= −1.202× 0.64984

2
+

1

2

√
1.2022 × 0.649842 + 4× 1 = 0.6830

Ωc2 = +
ΩcB

2
+

1

2

√
Ω2

cB
2 + 4Ω2

o

=
1.202× 0.64984

2
+

1

2

√
1.2022 × 0.649842 + 4× 1 = 1.4641

• Step 6: Find the Analog Filter
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In order to obtain the bandpass filter from lowpass filter, we substitute,

s→ s2 + Ω2
o

(Ωc2 − Ωc1)s
(31)

Therefore, the Bandpass filter obtained after transformation,

H(s) =
1

s2+1
(1.4641−0.6830)s + 1

=
1

s2+1
0.7811s + 1

H(s) =
0.7811s

s2 + 0.7811s+ 1

• Step 7: Find the equivalent IIR filter using Bilinear Transform.

Bilinear transformation is given as s→ 1−z−1

1+z−1 . Therefore,

H(z) =
0.7811

Ä
1−z−1

1+z−1

äÄ
1−z−1

1+z−1

ä2
+ 0.7811

Ä
1−z−1

1+z−1

ä
+ 1

H(z) =
0.2809− 0.2809z−2

1 + 0.4383z−2

The final bandpass filter is obtained as,

H(z) =
0.2809− 0.2809z−2

1 + 0.4383z−2
(32)

MATLAB Code

Following is the code snippet for Bandpass filter. The frequency response and the pole zero plot is
as shown in Fig. 11 and 12 respectively.

1 clc;clear;close all;
2 %% Pass band and Stop Band edges
3 wp = [0.4 0.6];
4 ws = [0.1 0.9];
5

6 %% Pass band and Stop Band attenuation
7 Ap = 3;
8 As = 18;
9

10 %% Get Cutoff and Order
11 [N wc] = buttord(wp,ws,Ap,As);
12 disp(['Order:' num2str(N)]);
13 disp(['Cutoff: ' num2str(wc)]);
14

15 %% Value of Cutoff in Analog equivalent
16 WW = tan(wc.*pi/2);
17 disp(['Cutoff in Analog: ' num2str(WW)]);
18

19 %% Get Filter Coefficients
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20 [b a] = butter(N,wc,'bandpass')
21 %% Get Pole−Zero Plot
22 figure;
23 zplane(b,a);
24 set(findall(gcf,'Type','line'),'LineWidth',2,'MarkerSize',40)
25

26 %% Get Frequency Response
27 figure;
28 freqz(b,a);
29 set(findall(gcf,'Type','line'),'LineWidth',2,'MarkerSize',40)
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Figure 11: Frequency response for BPF
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Figure 12: Pole zero for BPF

6 Designing Digital IIR Band Stop Filter

Example: Design a Digital IIR Band stop filter with following specifications.

1. Lower pass band edge: 0.1π

2. Lower stop band edge: 0.4π

3. Higher stop band edge: 0.6π

4. Higher pass band edge: 0.9π

5. Pass band attenuation: −3 dB

6. Stop band attenuation: −18 dB
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As = −18 dB

Ap = −3 dB

|H(ω)|

ωsu = 0.6π

ωpu = 0.9π

ωsl = 0.4π

ωpl = 0.1π

ωo ω

Figure 13: Band Stop Filter Specifications

• Step 0: Interpreting the specifications and prewarping the frequencies

Ωpl = tan
(ωpl

2

)
= tan

Å
0.1π

2

ã
= tan(0.05π) = 0.15838

Ωsl = tan
(ωsl

2

)
= tan

Å
0.4π

2

ã
= tan(0.2π) = 0.72654

Ωsu = tan
(ωsu

2

)
= tan

Å
0.6π

2

ã
= tan(0.3π) = 1.37638

Ωpu = tan
(ωpu

2

)
= tan

Å
0.9π

2

ã
= tan(0.45π) = 6.31375

• Step 1: Frequency Mapping for Obtaining Normalized LPF

The band stop filter is to be mapped to low pass filter in order to use Butterworth approxi-
mation. The mapping used is:

s→ Bs

s2 + Ω2
o

(33)

where, B = Ωpu − Ωpl and Ωo is the center frequency which is geometric mean of any two
frequencies on its either side that correspond to same magnitude. In general, the passband
frequencies are considered. Therefore, Ω2

o = Ωpu × Ωpl. The mapping reduces to,

s→ s(Ωpu − Ωpl)

s2 + Ωpu × Ωpl
(34)

and the frequency mappings are given as,

ΩLP →
ΩBS(Ωpu − Ωpl)

Ωpu × Ωpl − Ω2
BS

(35)

where, ΩBS and ΩLP are the frequencies corresponding to BSF and prototype LPF respec-
tively. Here,

B = Ωpu − Ωpl = 6.15537
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Ω2
o = Ωpu × Ωpl = 1

The pass band and stop band edges when mapped lead to,

Ωpl = 0.15838→ 6.15537× 0.15838

1− 0.158382
= 1

Ωsl = 0.72654→ 6.15537× 0.72654

1− 0.726542
= 9.4721

Ωsu = 1.37638→ 6.15537× 1.37638

1− 1.376382
= −9.4721

Ωpl = 6.31375→ 6.15537× 6.31375

1− 6.313752
= −1

Ωo = 1→ 6.15537× 1

1− 12
=∞

The mapping for the BSF is as shown in Fig. 14.

As = −18 dB

Ap = −3 dB

|H(Ω)|

tan(0.3π)

tan(0.45π)

tan(0.2π)
tan(0.05π)

Ωo = 1 Ω

0

Ap = −3 dB

As = −18 dB

−9.4713 −1 9.47131

Ωp

Ω

Ωs

|H(Ω)|

Figure 14: Frequency Mapping for Band Stop Filter
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Therefore, the mapped frequencies for LPF can be obtained as,

Ωp = 1

Ωs =
Ωsl(Ωpu − Ωpl)

Ωpu × Ωpl − Ω2
sl

= 9.4721

• Step 2: Finding Order for the prototype LPF

The order can be found as,

N =
log
Ä

10|As|/10−1
10|Ap|/10−1

ä
2× log

Ä
Ωs
Ωp

ä
For considered example,

N =
log
Ä

1018/10−1
103/10−1

ä
2× log

(
9.4721

1

) = d0.9192e = 1.

• Step 3: Find Normalized LPF Equation by Finding roots or Using Polynomial
Table.

From Table 1, the normalized LPF is given as,

H(s) =
1

s+ 1
(36)

• Step 4: Find the cutoff frequency

The cutoff frequency can be calculated as,

Ωc =
Ωs(

10|As|/10 − 1
) 1

2N

(37)

For this example,

Ωc =
9.4721(

1018/10 − 1
) 1

2

= 1.202 (38)

• Step 5: Find Denormalized Cutoff Frequency

The cutoff frequency for the BSF can be found as,

Ωc1 = − B

2Ωc
+

1

2

 
B2

Ω2
c

+ 4Ω2
o

= − 6.15537

2× 1.202
+

1

2

…
6.155372

1.2022
+ 4× 1 = 0.1883

Ωc2 = +
B

2Ωc
+

1

2

 
B2

Ω2
c

+ 4Ω2
o

= − 6.15537

2× 1.202
+

1

2

…
6.155372

1.2022
+ 4× 1 = 5.3093
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• Step 6: Find the Analog Filter

In order to obtain the bandstop filter from lowpass filter, we substitute,

s→ (Ωc2 − Ωc1)s

s2 + 1
(39)

Therefore, the Bandstop filter obtained after transformation,

H(s) =
1

(5.3093−0.1883)s
s2+1 + 1

=
1

5.121s
s2+1 + 1

H(s) =
s2 + 1

s2 + 5.121s+ 1

• Step 7: Find the equivalent IIR filter using Bilinear Transform

Bilinear transformation is given as s→ 1−z−1

1+z−1 . Therefore,

H(z) =

Ä
1−z−1

1+z−1

ä2
+ 1Ä

1−z−1

1+z−1

ä2
+ 5.121

Ä
1−z−1

1+z−1

ä
+ 1

=
2 + 2z−2

7.1209− 3.121z−2

H(z) =
0.2809 + 0.2809z−2

1− 0.4383z−2

The final bandstop filter is obtained as,

H(z) =
0.2809 + 0.2809z−2

1− 0.4383z−2
(40)

MATLAB Code

Following is the code snippet. The frequency response and the pole zero plot is as shown in Fig.
15 and 16 respectively.

1 clc;clear;close all;
2 %% Pass band and Stop Band edges
3 ws = [0.4 0.6];
4 wp = [0.1 0.9];
5

6 %% Pass band and Stop Band attenuation
7 Ap = 3;
8 As = 18;
9

10 %% Get Cutoff and Order
11 [N wc] = buttord(wp,ws,Ap,As);
12 disp(['Order:' num2str(N)]);
13 disp(['Cutoff: ' num2str(wc)]);
14
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15 %% Value of Cutoff in Analog equivalent
16 WW = tan(wc.*pi/2);
17 disp(['Cutoff in Analog: ' num2str(WW)]);
18

19 %% Get Filter Coefficients
20 [b a] = butter(N,wc,'stop')
21 %% Get Pole−Zero Plot
22 figure;
23 zplane(b,a);
24 set(findall(gcf,'Type','line'),'LineWidth',2,'MarkerSize',40)
25

26 %% Get Frequency Response
27 figure;
28 freqz(b,a);
29 set(findall(gcf,'Type','line'),'LineWidth',2,'MarkerSize',40)
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Figure 15: Frequency response for BSF
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Figure 16: Pole zero for SBF
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7 Summary:

IIR Filter Designing

Specification Interpretation and Prewarping

Ω = tan
(
ω
2

) LPF

Ωp = 1

Ωs =
Ωs,pre
Ωp,pre

HPF

Ωp = 1

Ωs =
Ωp,HP
Ωs,HP

BPF

Ωp = 1

Ωs =
Ω2
su−ΩpuΩpl

Ωsu(Ωpu−Ωpl)

BSF

Ωp = 1

Ωs =
Ωsl(Ωpu−Ωpl)

ΩpuΩpl−Ω2
sl

Find Order for The Prototype LPF

N =
log

Å
100.1|As|−1

10
0.1|Ap|−1

ã
2 log

(
Ωs
Ωp

)

Find Normalized LPF Equation (H(s)) by finding the roots (sk) or using polynomial table

sk = ej
π
2

(2k+N+1)
N ; k = {0, 1, . . . N − 1}

Find the cutoff frequency

Ωc = Ωs

(100.1|As|−1)
1

2N

Find the Denormalized Cutoff Frequency

Ωc,actual = Ωc × Ωp,pre

LPF
Ωc,actual =

Ωs,HP
Ωc

HPF

Ωc1 = −ΩcB
2 + 1

2

√
Ω2

cB
2 + 4Ω2

o

Ωc2 = +ΩcB
2 + 1

2

√
Ω2

cB
2 + 4Ω2

o

B = Ωpu − Ωpl

Ω2
o = Ωpu × Ωpl

where,

BPF

Ωc1 = − B
2Ωc

+ 1
2

√
B2

Ω2
c

+ 4Ω2
o

Ωc2 = + B
2Ωc

+ 1
2

√
B2

Ω2
c

+ 4Ω2
o

B = Ωpu − Ωpl

Ω2
o = Ωpu × Ωpl

where,

BSF

Find the Analog Filter

s→ s
Ωc,actual

LPF

s→ Ωc,actual
s

HPF

BPF BSF

s→ s2+Ω2
o

s(Ωc2−Ωc1) s→ s(Ωc2−Ωc1)
s2+Ω2

o

Bilinear Transform to get H(z).

s→ 1−z−1

1+z−1

Frequency Mapping for Obtaining Normalized LPF

Figure 17: Summary of the IIR Filter Design
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Table 2: Typical Frequency Mappings

Frequencies
Frequencies Mapped for prototype LPF

LPF HPF BPF BSF

Ω Ω
Ωp,LP

−Ωp,HP
Ω

Ω2−Ωpu×Ωpl
Ω(Ωpu−Ωpl)

Ω(Ωpu−Ωpl)
Ωpu×Ωpl−Ω2

−∞ −∞ 0 −∞ 0
0 0 ∞ ∞ 0
∞ ∞ 0 ∞ 0

Center Frequency (Ωo)
(For BPF and BSF)

- - 0 ∞

−Ωp -1 1 - -
Ωp 1 -1 - -

−Ωs − Ωs
Ωp,LP

Ωp,HP
Ωs

- -

Ωs
Ωs

Ωp,LP

Ωp,HP
Ω - -

Ωpl - - -1 1
Ωpu - - 1 -1

Ωsl - -
Ω2
sl−Ωpu×Ωpl

Ωsl(Ωpu−Ωpl)
= −Ω2

su−Ωpu×Ωpl
Ωsu(Ωpu−Ωpl)

Ωsl(Ωpu−Ωpl)

Ωpu×Ωpl−Ω2
sl

Ωsu - -
Ω2
su−Ωpu×Ωpl

Ωsu(ΩpuΩpl)
Ωsu(Ωpu−Ωpl)
Ωpu×Ωpl−Ω2

su
= −Ωsl(Ωpu−Ωpl)

Ωpu×Ωpl−Ω2
sl
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