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Abstract21

We will consider the problem of multiwinner voting, in which the task is to identify a winning subset22

of candidates based on a collection of votes that express preferences over all available alternatives.23

Most literature on multiwinner voting focuses on restricting the size of the output committee. In recent24

work, [16] consider the problem of finding winning subsets that satisfy additional desirable properties,25

which they formalize using the notion of admissible sets. In our work, we propose to continue this26

line of study: specifically, we will consider algorithmic questions along the lines of approximation and27

restricted domains given the existing hardness results in the literature.28

29

Keywords and phrases Computational Social Choice, Approval Ballots, Multiwinner Voting, Dichotom-30

ous Preferences31

1 Introduction32

Approval based multiwinner voting aims to select a subset of candidates, often called commit-33

tee (or winners), from a class of admissible sets (subsets of candidates) based on the approval34

ballots of voters. Approval ballots are used in a wide range of areas such as recommendation35

systems, political elections, etc. Till now, most of the research in approval based multiwinner36

voting dealt with selecting a committee of cardinality exactly k. [3, 6] Such voting rules37

are called k-committee selection rules. The setting is quite practical in scenarios where the38

number of winning candidates is predefined. But, the relation between the candidates is39

ignored while determining the winners of the committee. For example, if there is a bad40

blood between two candidates but both are very highly approved by the voters, then the41

performance of the selected committee can go a notch down because of the irreconcilable42

relation between the two candidates. In this report, we present multiwinner rules with43

admissible sets being represented with respect to a graph where candidates are considered as44

vertices, and edges indicate the relations between candidates.45

Let C be a set of candidates. In our setting, we are additionally given a graph G = (C,A).46

The goal is to find a committee that has some combinatorial property, e.g., the subgraph47

induced by the committee is connected, is an independent set, etc. When the combinatorial48

property is “the subgraph induced by the committee excludes all candidates with bad relation”,49

we have the independent committee selection rule. In this selection rule, we have to consider50

all the candidates without any edge between them, i.e., we define a bad relation between51

two candidates as an edge between those two nodes. We first investigate the question of how52

efficiently an optimal committee can be calculated in this setting, i.e., the complexity of the53
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winner determination problem. We particularly focus on approval voting (AV), net-approval54

voting (NAV), proportional approval voting (PAV), Chamberlin-Courant approval voting55

(CCAV), satisfaction approval voting (SAV), and net-SAV (NSAV) in our setting 1, aiming to56

reveal how different combinatorial restrictions on admissible sets shape the complexity of57

winner determination for these rules.58

We first studied the universal admissible sets, i.e., every subset of candidates is an59

admissible set. Then, we study connected admissible sets, i.e., subsets that induce connected60

graphs, and bounded radius admissible sets, i.e., subsets that induce graphs of bounded61

radius. In this two cases, winner determination is NP hard for NSAV and NAV, and polynomial-62

time solvable for other rules. Moreover, we also study independent admissible sets, i.e., the63

selected committee should induce an independent set in the associated graph G = (C,A). For64

PAV and CCAV, the NP-hardness even holds when the associated graph is a path (in this case65

there is more than one vote). Else, it is NP Hard for even a single vote. This results have66

been presented by Yang et al. in their recent studies. [16] We show FPT results using Steiner67

Tree of the associated graph for connected graph property.68

We would like to further restrict the structure of the underlying graph imposed on the69

candidates by working with preferences from restricted domains. We explore a number of70

domain restrictions for dichotomous preferences that build on the same intuition as the71

concepts of single-peakedness and single-crossingness. We analyze the relationships among72

these restricted preference domains, and discuss the complexity of detecting whether a73

given dichotomous profile belongs to one of these domains. We also discuss the algorithmic74

complexity for the various voting rules under some of these domain restrictions. We would75

also like to extend this study to the model where votes are expressed as rankings, rather than76

as approval ballots, over the set of candidates.77

2 Literature Review78

The work of Yang and Wang [16] discusses approval-based multiwinner voting to select a79

set of candidates from a collection of subsets which they refer to as “admissible sets”. This80

generalizes the typical setting in which the problem is studied, which addresses the question81

of finding committees of size k, which can be viewed as the setting where every set of size82

k is admissible while others are not. The drawback of the default setting is that it does83

not account for the relation between the candidates while selecting them. The admissible84

sets setting allows us to encode a richer set of constraints on the winning committees. In85

particular, the study in [16] represents the election as a graph in which the vertices are taken86

as candidates and the edges represent the relationship between them, and admissible sets87

are vertex subsets that might be required to induce certain graph properties (such as being88

independent or being connected).89

The main question addressed is the complexity of winner determination when the com-90

mittees are required to belong to the family of admissible sets. The authors also consider91

issues of strategyproofness of various multiwinner rules in this setting. The scoring rules92

which have been used for analysing the multiwinner voting are: Approval Voting (AV), Net93

Approval Voting (NAV), Proportional Approval Voting (PAV), Chamberlin-Courant Approval94

voting (CCAV), Satisfaction Approval Voting (SAV), and Net SAV (NSAV). Further, the graph95

properties used to encode admissible sets that are used in the paper are the following:96

Universal: All graphs are included. No relation between the candidates is taken into97

consideration, also no limit on the number of candidates being selected.98
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Fixed-size: All graphs containing only k vertices. Used for analysis in some of the previous99

works. Again, no relation between the candidates is taken into consideration.100

Independent: All graphs without edges. When there is an incompatible relation between101

two candidates.102

Connected: All graphs connected by edges. Exactly opposite of Independent property.103

Bounded Radius: All graphs whose radius is at most d. There is at least one vertex in the104

graph which is at a minimum distance d′ from the rest of the vertices. This property can105

be used to solve the example taken in the introduction section of the paper.106

2.1 Related Work107

Multiwinner voting is a classical topic that is widely addressed in the literature, while the108

notion of a graph associated with the candidates of an election (or voters in an election) is109

also considered in many situations. The following is a brief summary of related work.110

N. Talmon : In this paper, the author has studied a generalization of proportional rep-111

resentation of CCAV to select a k-sized committee [15]. The paper discusses about the112

relation between each voter and how it can affect the final result. A graph is used for113

showing the relation between the voters with each vertex representing a voter.114

Aziz et al. (2015) : In this paper, the authors have discussed three rules for multi-winner115

approval voting namely: PAV, SAV, RAV [3]. They have used fixed size set of approval116

ballots for winner determination. Further, they have also analysed strategyproofness for117

AV under the same restrictions on the admissible sets.118

Betzler et al. : Proof for winner determination using CCAV multiwinner rule is NP-Hard is119

discussed in this paper [4]. They further try to find methods by which the problem can120

be solved effectively. They consider minimizing the maximal misinterpretation.121

D. Marc Kilgour : In this paper, a subclass of multi winner elections, variable number of122

winners (VNW) elections is discussed [13]. Many methods of counting approval ballots123

appropriate to VNW elections are reviewed and illustrated in this paper.124

Faliszewski et al. : An approval based multiwinner model of election was considered in125

this paper, in which universal admissible set was taken for winner determination [11].126

Bredereck et al. : This paper discusses a performance-based measure of the quality of127

the committee [5]. They have considered some restrictions on the candidates, without128

qualifying for which, the candidate won’t be able to be a part of any winning committee129

for the election regardless of her individual performance amongst the voters.130

Celis et al. : In this paper, it is discussed that while selecting a committee, if candidates131

have some special attributes, there arises a need for optimizing a multiwinner voting rule,132

as the voting rule may under or over represent in its selection [6].133

Aziz et al. : This paper answers one of the ‘future problems’ for the fixed admissible set134

property. This paper discusses the proportionality property (an axiom) named ’justified135

representation’ [1]. This axiom states that if a large enough group of voters exhibits136

agreement by supporting the same candidate, then at least one voter in this group has an137

approved candidate in the winning committee.138

3 Preliminaries139

An election is a tuple E = (C,V ) where C is a set of candidates and V is a multiset of votes,140

each of which is a subset of C. For a vote v ∈ V and a candidate c ∈ C, we say v approves c if141

and only if c ∈ v. Let 2C be the power set of C. A multiwinner rule φ is a function that assigns142
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to each election (C,V ) a subset φ(C,V ) ∈ AC , where AC ⊆ 2C is the co-domain and each143

element of AC is called an admissible set. The elements in φ(C,V ) are called the winners of144

(C,V ) with respect to φ.145

Table 1 Scoring Functions

multiwinner rules scoring functions f (v,w)

Approval Voting (AV) |v ∩ w|

Proportional Approval Voting (PAV) 1 + 1
2 + ...+ 1

|v∩w|

Chamberlin-Courant Approval Voting (CCAV) [7] 1 if v ∩ w 6= φ

0 if v ∩ w = φ

Satisfaction Approval Voting (SAV) |v∩w|
|v|

Net-SAV (NSAV) |v∩w|
|v| −

|v\w|
|C|−|v|

Net-Approval (NAV) |v ∩ w| − |v\w|

Consider the multiwinner voting rules defined based on the scoring function f : 2C×2C →146

R. For a subset C’ ⊆ C, the score of C’ in (C, V), with respect to f in
∑

v∈V f (v,C ′). The147

multiwinner rule φ selects an admissible set C’ ∈ AC maximizing
∑

v∈V f (v,C ′). Table 1148

summarizes some of the well known multiwinner rules and their scoring functions. As149

the number of admissible sets can be exponential in the number of candidates, a compact150

representation based on graph property has been proposed by Yang et al. [16] A graph151

property G is a class of graphs. Fixing a graph property G, the class of admissible sets AGC152

consists of all C’ ⊆ C such that G|C’| ∈ G, where G|C’| is the subgraph induced by C’. Graph153

properties studied are as follows:154

1. Universal This property consists of all graphs, i.e., every subset of C is an admissible set.155

2. Fixed-sized This is so far the most widely studied property. Particularly,it consists of all156

graphs of exactly k vertices.157

3. Independent The property consists of all graphs without edges. In some cases,there may158

exist irreconcilable conflicts between two candidates, thus, an edge between such two159

candidates indicates the existence of an irreconcilable conflict between them.160

4. Connected This property consists of all connected graphs. Different from the independent161

property, the edge between two candidates can be a positive indication (e.g., an edge162

means that they can cooperate efficiently, or they can communicate directly).163

5. Bounded Radius This property consists of all graphs with radius at most d, where d is164

a constant. The distance between two vertices is the length of a shortest path between165

them.166

For a graph property G and a multiwinner rule φf , the following problem is studied:167

Winner Determination With Restricted Admissible Sets (WD-(G, φf ))

Input: An election (C,V ), a graph G = (C,A), and a rational number r.

Question: ∃w ∈ AGC such that
∑

vinV f (v,w) ≥ r?
168
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Let C = c1 , c2 , ..., cm be a finite set of candidates. A partial order � over C is a reflexive,169

antisymmetric and transitive binary relation on C; a partial order � is said to be total if for170

each c, d ∈ C we have c � d or d � c. A partial order � over C is a dichotomous weak order171

if C can be partitioned in to two disjoint sets C+ and C− (one of which may be empty) so172

that c � d for each c ∈ C+, d ∈ C− and the candidates within C+ and C− are in comparable173

under �.174

An approval vote on C is an arbitrary subset of C. We say that an approval vote v is trivial175

if v= φ or v = C. A dichotomous profile P = v1 , v2 , ..., vn is a list of n approval votes; we will176

refer to vi as the vote of voter i. Therefore, v̄i = C\vi177

(a) Single Peakedness (b) Single Crossing

Figure 1 Preferences in Restricted Domain [10]

Let / be a total order over C. A total order � over C is said to be single-peaked with178

respect to / if for any triple of candidates a, b, c ∈ C with a / b / c or c / b / a it holds that179

a � b implies b � c. A profile P of total orders over C is said to be single-peaked if there180

exists a total order / over C such that all orders in P are single-peaked with respect to /181

A profile P = (�1,�2, ...,�n) of total orders over C is said to be single-crossing with182

respect to the given order of votes if for every pair of candidates a, b ∈ C such that a �1 b all183

votes where a is preferred to b precede all votes where b is preferred to a. P is single-crossing184

if the votes in P can be permuted so that it becomes single-crossing with respect to the185

resulting order of votes.186

Figure 2 Relation between notions of structures [9]

Few dichotomous constraints need to introduced first before indulging further. Most of187

these constraints can be divided into two basic groups: those that are based on ordering188

voters and/or candidates on the line and requiring the votes to respect this order (this189

includes VEI, VI, CEI, CI, DE, and DUE), and those that are based on viewing votes as weak190
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orders and asking if there is a single-peaked / single-crossing / 1Euclidean profile of total191

orders that refines the given profile (this includes PSP, PSC, and PE)192

1. 2-partition (2PART): We say that P satisfies 2PART if P contains only two distinct votes193

v, v′, and v ∩ v′ = φ, v ∪ v′ = C.194

2. Voter Extremal Interval (VEI): We say that P satisfies VEI if the voters in P can be195

reordered so that for every candidate c the voters that approve c form a prefix or a196

suffix of the ordering. Equivalently, both the voters who approve c and the voters who197

disapprove c form an interval of that ordering.198

3. Voter Interval (VI): We say that P satisfies VI if the voters in P can be reordered so that199

for every candidate c the voters that approve c form an interval of that ordering.200

4. Candidate Extremal Interval (CEI): We say that P satisfies CEI if candidates in C can be201

ordered so that each of the sets vi forms a prefix or a suffix of that ordering. Equivalently,202

both v̄i and vi form an interval of that ordering.203

5. Candidate Interval (CI): We say that P satisfies CI if candidates in C can be ordered so204

that each of the sets vi forms an interval of that ordering.205

6. Weakly single-crossing (WSC): We say that P satisfies WSC if the voters in P can be206

reordered so that for each pair of candidates a, b, c ∈ C it holds that each of the vote sets207

V1 = vi : a ∈ vi , b /∈ vi , V2 = vi : a /∈ vi , b ∈ vi , V3 = v ∈ P : v /∈ V1 ∪ V2forms an interval208

of this ordering, with V3 appearing between V1 and V2.209

(a) Voter Extremal Interval (VEI) (b) Voter Interval (VI)

Figure 3 When Voters are embedded on real axis [9]

(a) Candidate Extremal Interval (CEI) (b) Candidate Interval (CI)

Figure 4 When Candidates are embedded on real axis [9]

4 Theorems and Lemmas210

It is known that for fixed-sized admissible sets, winner determination for PAV and CCAV is211

NP-hard [3, 4] while the for the rest, it is polynomial time solvable. Winner determination is212

polynomial time solvable for all multiwinner rules for universal admissible sets [6, 2, 16].213
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Below are some of the theorems which have been studied by Yang et al. in their214

paper "Multiwinner Voting with Restricted Admissible Sets" [16].215

I Theorem 1. For G being the universal property and φf ∈ AV, PAV, CCAV, SAV, NSAV, NAV,216

WD-(G, φf ) is a polynomial time solvable [16].217

Proof. For AV, PAV, CCAV, SAV voting rules, the the set C of all candidates is always an
optimal committee, as there is no such negative score. So, for these rules we need only to
check if the score of C is at least r. Now we consider NSAV. For each candidate c, we define

g(c) =
∑

v∈V,c∈v

1
|v| −

∑
v∈V,c /∈v

1
|C| − |v|

Let C’ = c ∈ C | g(c) > 0. If C’ 6= φ, we return Yes if and only if the score of C’ is at least r.218

Otherwise, we return Yes if and only if there is a candidate c such that g(c) ≥ r. J219

For connected admissible sets, we also obtain polynomial time solvability results for CCAV,220

PAV, AV, and SAV, but obtain NP-hardness results for NAV and NSAV even if there is only one221

vote. This is because that for the first four rules, adding a candidate to a committee never222

decreases the score of the committee. Hence, there must be an optimal committee which223

induces a connected component. However, this is not the case for NAV and NSAV. This is224

so because we need to take care of the negative score that might arise in some cases so as225

to make the graph a connected graph, i.e., whose role is to connect the candidates with the226

positive scores.227

I Theorem 2. For G being the connected property and φf ∈ NAV, NSAV, WD-(G, φf ) is NP-hard,228

even if there is only one vote [16].229

RESTRICTED EXACT COVER BY 3-SETS (RX3C) [12]

Input: A finite set U = u1, u2, ..., u3k and a collection S = s1, s2, ..., s3k of 3-subsets of
U s.t. every u ∈ U occurs in exactly three subsets of S.

Question: ∃S′ ⊆ S such that |S′| = k and every u ∈ U occurs in exactly one subset of
S′?

230

Proof. First, we will give construction of the instance. Given an RX3C instance (U,S)231

where|U| = |S| = 3k, we create an instance of WD-(G, φf ) as follows. For each u ∈ U, we232

create a candidate c(u). For each s ∈ S, we create a candidate c(s). Let C(U) = c(u)|u ∈ U ,233

C(s) = c(s)|s ∈ S. In addition, we also introduce a candidate b. Hence, C = C(U)∪C(S)∪b. In234

the graph G = (C,A), we create an edge between b and every c(s), where s ∈ S. Additionally,235

for every c(s), s ∈ S, and every c(u), u ∈ U, we create an edge between them if and only if236

u ∈ s. Moreover, we create one vote v which approves all candidates in C(U) and disapproves237

all other candidates, i.e., v = C(U). Finally, we set r = 2k − 1.238

Now we assume that there is an exact 3-set cover S’ ⊆ S. Let w = c(s)|s ∈ S ∪ C(U) ∪ b.239

Therefore, size of the admissible set |w| = 4k - 1. Also, w induces a connected graph in G.240

NAV Score will be |v ∩ w| − |w\v|, which is equal to (3k - (2k + 1) = r. Now we prove the241

correctness for the opposite direction. Now we assume the score of the committee w to be242

atleast r, i.e., 2k − 1. Let x = |w ∩ C(U)| and y = |w ∩ C(S)|. Now, we assume that b is in243

the winning committee w. We will prove this using contradiction. Let us assume that b /∈ w.244

Therefore, to make the graph a connected subgraph, it should satisfy y > x−1
2 . Hence, the245
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score of the winning committee w will be x - y ≤ 3k+1
2 which is less that 2k - 1. Thus, our246

assumption is wrong. b is in w. To make the graph a connected graph, y geq x
3 . Therefore,247

score of w is x - y - 1 ≤ 2x
3 − 1. If x = 3k, score will be atmost 2k − 1. Therefore, to have a248

winner determination, x = C(U) and y = C(S). J249

Figure 5 Weakly Single Crossing (WSC)

I Theorem 3. For G being class of graphs with radius atmost 2 and φf ∈ NAV, NSAV, WD-(G,250

φf ) is NP-hard, even if there is only one vote [16].251

Proof. In the WD-(G, φf ) instance constructed in the proof of Theorem 2, every optimal252

committee includes b and k candidates in C(S) to connect the candidates in C(U). The253

induced subgraph has radius 2. This directly gives us the above result. J254

I Theorem 4. For G being class of graphs with radius atmost d and φf ∈ AV, PAV, SAV, CCAV,255

WD-(G, φf ) is polynomial-time solvable [16].256

I Theorem 5. For G being the independent property and φf ∈ PAV, CCAV, WD-(G, φf ) is257

NP-hard, even if the associated graph is a path and every voter approves only two candidates258

[16].259

ALMOST 2-SAT

Input: A set X = {x1 , x2 , ..., xm} of Boolean variables, a set CL = {cl1 , cl2 , ..., cln, l} of
clauses each of which consists of exactly two literals of variables in X, and a positive
integer l.

Question: Is there a truth assignment δ : X→ {0, 1} which satisfies at least l clauses
in CL? Here, a clause cl ∈ CL is satisfied by δ if there exists a literal x ∈ cl such that
δ(x) = 1 or a literal x̄ ∈ cl such that δ(x) = 0

260

Proof. Let X = x1 , x2 , ..., xm and cl1 , cl2 , ..., cln, l be an instance of the ALMOST 2-SAT261

problem. Construction is done as follows. For each x ∈ X , we create two candidates c(x) and262

c(x̄). Also, we introduce additional m−1 dummy candidates c1 , c2 , ..., cm−1 . For every xi ∈ X,263

1 ≤ i ≤ m, there is an edge between c(xi) and c(x̄i). In addition, for every ci , 1 ≤ i ≤ m − 1,264

there is an edge between ci and c(xi), and an edge between ci and c(xi+1 ). For each cl ∈265

CL, we create three votes v(cl, 1 ), v(cl, 2 ) and v(cl, 3 ). The votes are as follows: v(cl, 1 ) and266
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v(cl, 2 ) are the same and they approve c(y) for every literal y ∈ cl and v(cl, 3 ) approves c(ȳ)267

for every literal y ∈ cl. Also, set r = 3
2 .(l + n)268

First, we assume that there exists at least l clauses in CL. Let CL’ be the set of all clauses
that are satisfied by δ, thus, |CL’| ≥ l. Therefore, w is a set of candidates such that they
follow the independent property, The set w can be represented as follows:

w = {c(x) | x ∈ X, δ(x) = 1} ∪ {c(x̄) | x ∈ X, δ(x) = 0}

Observe that for every clause cl ∈ CL’, either both literals in cl are true or exactly one of269

them is true with respect to δ. Due to the construction, in the former case, both approved270

candidates of v(cl, 1 ) and v(cl, 2 ) are in w, and none of the approved candidates of v(cl, 3 )271

is in w. Therefore, the score for them will be f (v(cl, 1 )) = f (v(cl, 2 )) = 3
2 . If exactly one of272

them is true, then the score will be f (v(cl, 1 )) = f (v(cl, 2 )) = f (v(cl, 3 )) = 1. In both cases,273

we have the total score of the satisfied clause to be 3. Now, we will consider clauses which274

are not satisfied by the truth assignment δ, cl ∈ CL\ CL’, therefore, both the candidates are275

approved by v(cl, 3 ). Score will be 3
2 . Now, the election score is:276

∑
v∈V

f (v,w) =
∑

cl∈CL′

( ∑
1≤i≤3

f (v(cl, i),w)
)

+
∑

cl∈CL\CL′

( ∑
1≤i≤3

f (v(cl, i),w)
)

277

= 3.|CL′|+ 3
2 .|CL\CL

′| ≥ 3
2(l + n) = r278

279
280

The proof in reverse direction is as follows. There won’t be any dummy candidates now.281

We know that the candidates are independent and we know r. Therefore, it holds exactly282

one of c(i) and c(̄i). If let’s say, the winning committee satisfies l ′ clauses, then the score of283

the election will be 3
2 (l ′ + n). But, this should be at least greater than or equal to r, which is284

equal to 3
2 (l + n). Therefore, l ′ equals l, i.e., it should satisfy l clauses. J285

5 Our Contributions (Discussion)286

It is known that for connected admissible sets, winner determination for NAV and NSAV is287

NP Hard, even if there is only one voter. [16] We show that winner determination for NAV288

and NSAV is polynomial time solvable if we restrict the size of the voter to atmost k.289

Lemma 1: For G being the connected property and φf ∈ NAV, NSAV, WD-(G, φf ) is290

polynomial time solvable in 2k3kpoly(n), for one vote of size at most k.291

Construction: The winner determination function will select the maximum NAV score292

for the election. This will be possible when the candidates included in the admissible set293

from the voter set are maximised and those not in the voter set are minimized. The graph has294

connected property, so we need to select an admissible set such that it is a connected graph.295

Thus, we will need to choose minimal number of candidates to make |w ∩ v| a connected296

graph. This can be achieved by using Steiner Trees. The dynamic programming algorithm for297

Steiner trees can be implemented with running time 3|k|nO(1) [8].298

Though the voting rule is polynomial time solvable in 6kpoly(n) for one voter, it can be299

seen that in case of multiple voters, it gives a time complexity of O(cnk). Thus, it can be300

seen it is not a very efficient algorithm in case of multiple votes. We can also notice that the301

restricted preferences cannot be imposed on graph. Thus, a need for efficient algorithms302

becomes essential.303



P. Varad 11

6 Conclusion304

We have thus studied multiwinner voting with different admissible sets by representation305

using graph properties. We also tried imposing various restricted preferences on the graph.306

We studied the winner determination complexity for different voting rules on various graph307

properties. After that, we tried to improve the known results for winner determination308

complexity of NAV/NSAV Voting rules on the connected graph property by restricting the309

size of the vote to at-most k. We were able to make the winner complexity to be solvable in310

polynomial time O(6kpoly(n)) for one vote.311

Further, we tried to make it solvable in polynomial time for n voters for NAV/NSAV voting312

rules on a connected graph. We can try exploring reduction to Red Blue Dominating Sets to313

try to prove that the above it W-Hard solvable. It is very interesting to see that once we are314

able to make the voting rule polynomial solvable for n voters, we can try imposing restricted315

preferences in dichotomous domains such as VEI, CEI or WSC on the given candidate or316

voter sets. Further, we can explore the strategyproofness results for the restricted admissible317

sets. We plan to futher pursue this in two major directions: the first is by restricting the318

structure of the underlying graph imposed on the candidates, and the second is by working319

with preferences from restricted domains. We would also like to extend this study to the320

model where votes are expressed as rankings, rather than as approval ballots, over the set of321

candidates.322
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