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Problem Statement

e We participated in the Sixth Social Media Mining for Health Applications
(SMM4H) shared tasks focus on addressing such classic health related
problems applied to Twitter micro-corpus.

A) Task 1a: Classification of Tweets B) Task 4: Classification of self-reported
mentioning Adverse Drug Effects. adverse pregnancy outcomes.

C) Task 8: Classification of self-reported
breast cancer tweets.

e The goal was to improve the performance of our binary classification
model on each of the three tasks such that they perform well on the test
set.
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Goal

Developing hinary classifier
models for the shared tasks.
Dealing with imbalanced
annotated datasets.

Fine tuning and optimizing
performance of proposed
models.




Studying the dataset of each task

Task | Label # Sample Instance
ooh me too! rt @xyleS50ul: #schizophrenia #seroquel did not suit me at
ADE 1300 ; :
all. had severe tremors and weight gain..
L I need Temazepam and alprazolam.... Is there any doctor can prescribe
NoADE| 17000 | - 00 "CMazeR g 4 e
for me?? :/
The LAST thing you wanna do is call my son "slow" or say he’s
APO 2922 " . " 9 *
different than everyone else" because he’s a preemie.. Fuck off.
Task 4 : T z T
NoAPO| 3565 I don’t usually use the term "rainbow baby" myself but I think it’s
incredibly brave when people share these... https://t.co/jjktHOewDz
@arizonadelight 1’m a breast cancer survivor myself so 1 understand the
S 975
Task 8 scare.
NR »340 All done, we done for raising awareness, [ have a good friend battling

this at the moment #breastcancer.




Studying the dataset of each task

Task 1a Task 4 Task 8
Corpus | ADE NoADE # NoAPO APO # NR S #
Train Set | 1235 16150 17385 3030 2484 5514 | 2615 898 3513
Valid Set | 65 850 915 535 438 973 225 T 302
Test Set NA NA 10000 NA NA 10000 | NA NA 1204

e Shortcomings of the dataset and plausible disadvantages while training
on a text classifier model.

e Proposing techniques to counter data imbalance.



Countering Data Imbalance

A) Undersampling Dataset E> e Reduce samples of majority class in the dataset.
e Avreduction of ratio from 1:16 to 1:4 or 1:6

results in better performance than ratio of 1:1

SMOTE doesn't work well on text data due to its

nature of high dimensionality. <:| B) Oversampling Dataset
Thus, increasing samples of minority class

(duplication) is executed.

e Ratio is adjusted according to bias present.

C) Data augmentation E> e Make use of nlpaug library for augmenting dataset.
e Synthetic data is generated by making use of

spelling variations, word-embedding, synonymes,
etc.




For each tweet in our dataset;

e Normalized usernames and keywords into reserved keywords.
o Library used: unidecode
o Example: S’il vous plait :: Sil vous plait
e De-emojized the tweets to the emojis with relevant tags.
o Library used: emoji
o Example: & :: :face_with_tears_of_joy:
e Expanded contractions for faster processing.
o Library used: contractions
o Example: | don't want to go to Paris :: | do not want to go to Paris.

e Lower-cased all tweets.



Proposed

general

arcnitec
or SMM4
tasks
13,4 & 8.

Sharec

= A

odel
e

_I

Shared Task
1a/4/8

Preprocessing Tweets

APO/NoAPO

1. Standarization
of Text.

2. Demojization.
3. Expanding
Contractions.

Handling Data Imbalance

1. Oversampling.

2. Undersampling.

3. Data Augmentation.

| S

Class Label

y

Model Tuning

2. Epochs.

3. Batch Size.
4. Optimizer.
5. Embeddings.

1. Learning Rate.

A\ 4

Store Best
Model

Predictions

ADE/NoADE

]

[CHTlHTZ

BERT

ElcLs] | E1 E2 E3

RN

—|APO/NoAPO




- Machine Description: - Framework & Libraries used:

€ Intelcorei5 € NLPAUG
¢ C(CPU @2.50GHz € Tensorflow
¢ 3GBRAM € PyTorch
€ 4logical cores. € Flair

€ KTrain



System Description

- We experimented on various types of 1. Penalize loss weights of

embeddings. rare class two times.
- RoBERTa and BioBERT worked the best in 2. Experiment of all 3

our case. variations of dataset.

3. Learning Rate: 6e-6 - 1e-5
Architecture XLRLG F1 | Prec | Recall 4. Batchsize: 8
(%10 5. Patience: 2
BERT 10 0.872 | 0.843 | 0.902 6. Max Epochs: 3

BERTweet 10 0.899 | 0.896 | 0.906
DistilBERT 50 0.835 | 0.839| 0.831
RoBERTa 6 0.924 | 0.897 | 0.952
XLNET 5 0.903 | 0.922| 0.886
BioBERT 5 0.874 | 0.859| 0.890




Validation set

Dataset F1 Precision | Recall
Undersampled | 0.5048 | 0.5561 0.4623
Oversampled | 0.4361 0.4186 | 0.4553
Original 0.8136 | 0.9057 | 0.7385
Augmented 0.8433 | 0.8209 | 0.8572
Test set
Dataset F1 Precision | Recall
Original 0.3 0.473 0.217
Augmented 0.4 0.405 0.401
Median 0.44 0.505 0.409




Results & Observation; Task 4

Validation set

Dataset F1 Precision | Recall

Original 0.9437 | 0.9251 | 0.9631

Augmented | 0.9279 | 0.9028 | 0.9543

Test set
Dataset F1 Precision | Recall
Original 0.93 0.9149 | 0.9412

Augmented | 0.92 0.8919 0.948

Median 0.925 0.9183 | 0.9234




Results & Observation: Task 8

Validation set

Dataset F1 Precision | Recall

Undersampled | 0.8182 | 0.7273 | 0.9351

Oversampled 0.828 0.8125 | 0.8442

Original 0.8707 | 09143 | 0.8313
Augmented 0.8947 | 0.9067 | 0.8831
Test set
Dataset F1 Precision | Recall
Original 0.83 0.8441 0.8216
Augmented 0.84 0.8706 | 0.8084

Median 0.85 0.8701 | 0.8377




Conclusion & Future Work

e We proposed a text classification pipeline while also making an
attempt to handle dataset imbalance corresponding to three
different shared tasks in SMM4H'21.

e We conclude that data augmentation gives best performance on
highly imbalanced datasets.

e Moreover, augmentation provides better results in case of
comparatively balanced datasets.

e As part of future work, additional experiments are planned to
further analyze strategies to improve the performance of the
model on the dataset.
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