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A B S T R A C T

Sleep is one of the most important body mechanisms responsible for the proper functioning of human body.
Cyclic alternating patterns (CAP) play an indispensable role in the analysis of sleep quality and related disorders
like nocturnal front lobe epilepsy, insomnia, narcolepsy etc. The traditional manual segregation methods of CAP
phases by the medical experts are prone to human fatigue and errors which may lead to inaccurate diagnosis
of sleep stages. In this paper, we present an automated approach for the classification of CAP phases (A and B)
using Wigner–Ville Distribution (WVD) and Rényi entropy (RE) features. The WVD provides a high-resolution
time–frequency analysis of the signals whereas RE provides least time–frequency uncertainty with WVD. The
classification is performed using medium Gaussian kernel-based support vector machine with 10-fold cross-
validation technique. We have presented the results for randomly sampled balanced data sets. The proposed
approach does not require any pre-processing or post-processing stages, making it simple as compared to the
existing techniques. The proposed method is able to achieve an average classification accuracy of 72.35% and
87.45% for balanced and unbalanced data sets respectively. The proposed method can aid the medical experts
to analyze the cerebral stability as well as the sleep quality of a person.

1. Introduction1

Sleep is one of the important elements which is responsible for2

holistic fitness and proper functioning of the human body. It plays a3

paramount role in proper functioning as well as in the improvement4

of the vitality of our body [1]. Studies show that sleep deficiency5

may cause inability in decision making, problem-solving, controlling6

the emotions and adaption to rapid changes in people [1,2]. The7

sleep quality of a person can be quantitatively analyzed using several8

measures like sleep duration, sleep intensity, sleep continuity and cyclic9

alternating patterns [2,3]. Sleep is comprised of recurring alternating10

cycles of rapid eye movement (REM) and non-REM (NREM). In the for-11

mer class, the person experiences rapid eye movements in all directions.12

Generally, the REM cycles occur for a short period after the NREM13

cycles. This repetitive cycle continues. As per the rules presented by14

Rechtschaffen & Kales in 1968 and the American Academy of Sleep15

Medicine (AASM) consensus, the sleep is comprised of four stages16
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which include one REM and three NREM stages [4,5]. Several works 17

to classify the sleep stages can be found in literature [6,7]. In 2001, 18

an alternate way for characterization of NREM sleep termed as cyclic 19

alternating pattern (CAP) was proposed [8]. CAP refers to the sponta- 20

neous recurrent EEG activity of the non-rapid eye movements (NREM) 21

sleep and is characterized by pseudo-periodic phase-wise transients 22

that alternate with the EEG background pursuits [8]. It represents the 23

instability or disturbance of the sleep. CAP phases play an indispensable 24

role in the analysis of not only sleep disorders but also neurological 25

disorders like insomnia, narcolepsy, etc. Its repetitive pattern assists in 26

the exploration of overall quality of sleep [8]. 27

Each CAP cycle is characterized by two stages, the phase that in- 28

cludes the phasic transients (phase A) and background activities (phase 29

B) [9]. An example of A and B phases in the EEG signals are shown 30

in Fig. 1. The cerebral oscillations of A-phase occur for a duration 31

from 2s to 60 s in NREM stages of the sleep. A-phase is either slow 32
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Fig. 1. A and B phases of the CAP cycles (subject name: n5).

varying high amplitude signals or fast varying low amplitude signals1

or a combination of both. It can be further categorized into three sub-2

phases, namely A1, A2, and A3. Attempts of sleep preservation are3

demarcated by A1 phase which occurs in the frequency range of 0.5 Hz4

to 4 Hz and is designated by delta-bursts and k-complexes [10]. An5

increase in sleep instability results in high amplitude slow varying6

signals, leading to A2 and A3 phases. The A3 phase is characterized7

by alpha and beta waves belonging to the frequency ranges 8 Hz to8

12 Hz and 12 Hz to 30 Hz respectively. A2 is a combination of both A19

and A3 phases.10

CAP detection not only helps in qualitative analysis of sleep and11

cerebral surges but also in the diagnosis of diseases like sleep apnea12

and insomnia [9,11–14]. In practice, the annotation of CAP phases is13

done by the manual observation by the medical experts, which may14

lead to human errors and improper classification. This gives rise to the15

need for automated classification of CAP phases. Many attempts have16

been made to classify the CAP phases. Most of the developed methods17

have used the electroencephalogram (EEG) signals. All the major works18

involve the use of the spectral bands of the EEG signal as well as the19

onset-offset separation of the CAP phases. The methods developed in20

the literature not only perform A phase detection but also present A21

phase classification. One such attempt was presented in [15] where the22

authors have classified onset-offset of A and B phase using the 𝑘-nearest23

neighbor (KNN) classifier. A similar approach was adopted in [10] in24

which the onset-offset methodology was used for the separation of A25

and B phases. The authors have also carried classification of A phase26

into A1, A2 and A3.27

Taking into consideration the existence of CAP phases in specific28

bands of the EEG signals, many works in the literature have utilized29

the properties corresponding to various EEG bands for CAP phase30

segregation. In [16], authors have analyzed six EEG bands (low delta,31

high delta, theta, alpha, sigma and beta) for feature extraction. They32

employed A phase detection algorithm using an artificial neural net-33

work (ANN). A set of 5 band descriptors in delta, theta, alpha, sigma34

and beta bands has been used for the recognition of A-Phase and its35

sub-phases using pre-decided thresholds [17]. The frequency ranges36

corresponding to the bands are as delta: 0.75–4 Hz, theta: 4–8 Hz, al-37

pha: 8–12 Hz, sigma: 12–15 Hz and beta: 15–25 Hz. The authors in [18]38

used ANN-based automated NREM isolation followed by segmentation39

using spectral error measures. A two network cascade approach was40

presented in [19]. They have employed deep autoencoder for feature41

extraction and a shallow and optimized ANN for the classification 42

of CAP phases. Another approach of A and B classification and the 43

CAP cycles using finite-state machines (FSM) was presented in [20]. 44

Recently, a temporal analysis method using recurrent neural network 45

(RNN) for classification of CAP phases was introduced in [21]. Apart 46

from neural network techniques, several authors have analyzed the CAP 47

cycles using the basic machine learning (ML) algorithms [10,15,22]. 48

For example, in [22], A-phase segmentation algorithm is illustrated 49

along with ANN, support vector machines (SVM), adaptive boosting 50

and discriminant classifier. 51

In this paper, we propose the A-phase classification method using 52

Wigner–Ville Distribution (WVD) and Rényi entropy (RE). The Rényi 53

entropy assists in extracting significant information from the time– 54

frequency distributions [23–26]. The reason for utilizing this combo 55

is provision of excellent resolution by WVD in the time–frequency 56

analysis. The Rényi uncertainty is achieved minimum for the WVD, 57

leading to higher information extraction [23]. The main contributions 58

of the paper are as follows. 59

• Wigner–Ville Distribution (WVD) and RE features are used for the 60

classification of A and B phases of CAP database. 61

• An overall and subject-wise analysis is performed for six subjects 62

for A-phase detection using balanced data set. The analysis results 63

are compared with unbalanced data set. The uniformity and 64

robustness of the data set is ensured by randomly extracting an 65

equal number of A and B phase samples from each subject. The 66

A-phase samples consist of randomly extracted and balanced sub- 67

phases A1, A2 and A3, thus making this one of the first works of 68

A-phase detection for randomly sampled balanced CAP data set. 69

• Unlike the existing works, the proposed technique does not re- 70

quire any pre-processing and post-processing stages. Thus simpli- 71

fying the overall process. 72

The paper is further organized as follows. The proposed approach 73

and details of data set are given in Section 2. The results presented and 74

discussed in Section 3 and conclusions are drawn in Section 4. 75

2. Methods and materials 76

2.1. Data set 77

We have used the publicly available CAP sleep database [8,27] 78

to develop and evaluate the model. The data set consists of 108 79
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Fig. 2. Work-flow of the proposed method.

polysomnographic recordings registered at Sleep Disorder Center of the1

Ospedale Maggiore of Parma, Italy [27]. The available data includes at2

least three EEG channels namely, F3 or F4, C3 or C4 and A1 or A2,3

two electrooculogram (EOG) channels, submentalis muscle electromyo-4

gram (EMG), bilateral anterior EMG, EKG and respiration signals along5

with some additional traces of bipolar EEG signals. The recordings6

are categorized as per the subject’s pathology like bruxism, insomnia,7

narcolepsy, nocturnal frontal lobe epilepsy, periodic leg movements,8

REM behavior disorder, and sleep-disordered breathing. The data was9

recorded during night and has duration of about 9–10 h. In this work10

we have used normal (no pathology) data in order to avoid the effects11

of various pathology disorders.12

The data for normal subjects have different sampling rates of13

100 Hz, 128 Hz, 200 Hz and 512 Hz. In this work, we have considered14

data of all 6 subjects that have same sampling frequency of 512 Hz.15

Other signals with different sampling frequencies can also be consid-16

ered if resampling is allowed, however, in order to avoid the effects of17

resampling such signals are not considered. The recordings consist of18

either C4-A1 or C3-A2 channels of EEG channels. These signals were19

further segmented in chunks of 2 s Due to insignificance of the CAP20

phases in the wake (W) state [8], only NREM sleep data has been21

retained.22

Table 1
Total number of samples (unbalanced data set) of A and B phases for six normal
condition subjects with a sampling frequency of 512 Hz.

Subject name Number of samples

A1 A2 A3 A (A1+A2+A3) B Total (A+B)

n1 1013 354 548 1915 12930 14845
n2 550 327 597 1474 10575 12049
n3 285 284 494 1063 10125 11188
n5 1307 157 377 1841 11475 13316
n10 703 159 445 1307 8550 9857
n11 796 270 386 1452 9225 10677
Total 4654 1551 2847 9052 62880 71862

Table 2
Subject-wise data samples obtained after balancing the data set.

Subject name Number of samples

A1 A2 A3 A (A1+A2+A3) B Total (A+B)

n1 354 354 354 1062 1062 2124
n2 327 327 327 981 981 1962
n3 284 284 284 852 852 1704
n5 157 157 157 471 471 942
n10 159 159 159 477 477 954
n11 270 270 270 810 810 1620
Total 1551 1551 1551 4653 4653 9306

The distribution of total number of samples for the considered 6 23

subjects are shown in Table 1. It can be observed that the data is highly 24

imbalanced. Hence, for consistency, we adopted an extensive balancing 25

by considering an equal number of samples of A and B phases. The data 26

set consisting of 9306 signals, each of length 1024 is formed. It should 27

be noted that A phase is internally balanced such that an equal number 28

of samples for A1, A2 and A3 sub-phases is considered. The sample 29

selection is done randomly for each subject. Subject-wise number of 30

samples considered for the balanced data set are shown in Table 2. 31

2.2. Proposed approach 32

The workflow of the proposed approach is shown in Fig. 2. The 33

NREM segments of the night-long EEG signals are segmented to form 34

a data set that is fed to the feature extraction stage followed by 35

classification. 36

2.2.1. Wigner–ville distribution 37

WVD has been recently being used in various biomedical signals 38

classification [28–31]. It is a promising transform which allows us 39

to analyze a signal in high-resolution time–frequency aspects. It has 40

been widely used in the areas of signal visualization, estimation and 41

detection [32–35]. The EEG signals used for the classification of CAP 42

phases lie in different frequency ranges. Hence, time–frequency analysis 43

methods proved to be of a high significance in the analysis of these 44

signals. Typically, for a discrete signal 𝑥(𝑛) with 𝑁 samples, the WVD 45

is given by: 46

𝑋(𝑚, 𝑘) =
𝑁
∑

𝑛=−𝑁

(

𝑥
(

𝑚 + 𝑛
2

)

𝑥∗
(

𝑚 − 𝑛
2

)

𝑒
−𝑗2𝜋𝑘𝑛

𝑁

)

, (1) 47

where 𝑚 and 𝑘 correspond to the time and frequency components 48

respectively and 𝑗 =
√

−1. The quantity 𝑥∗(𝑛) is the complex conjugate 49

of 𝑥(𝑛). For considered case, 𝑥(𝑛) is the EEG signal of 2 s duration. The 50

resultant WVD is a 2-D matrix of dimensions 𝑁𝑓 × 2𝑁 , were 𝑁𝑓 is the 51

number of frequency components. For sampling frequency of 512 Hz, 52

the maximum value of frequency correspond to 256 Hz. The significant 53

frequencies for the considered EEG signals range from 0 to 30 Hz with 54

121 total number of frequency components. Therefore, the dimensions 55

of the WVD matrix is 121 × 2048. 56
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2.2.2. Feature extraction1

We have used Rényi entropy (RE) also known as alpha-order en-2

tropy, as a feature which is obtained from WVD of EEG data. RE3

is the generalized form of Shannon entropy and provides more flex-4

ibility [36]. The entropy parameters provide us with the degree of5

randomness in the data. It is calculated by,6

𝑅𝐸(𝑋𝑘) =
(

1
1 − 𝛼

)

log(
𝑁
∑

𝑛=1
|𝑋𝑘(𝑛)|

𝛼) (2)7

where, 𝑁 = 2048 and (𝑋𝑘)T. Here, 𝛼 ≠ 1. For the presented method,8

Rényi entropy of order 2 is calculated (𝛼 = 2). So, the equation of RE9

becomes,10

𝑅𝐸 = − log
(

𝑁
∑

𝑛=1
|𝑋𝑘(𝑛)|

2) (3)11

The RE features result in a feature vector of 121 samples. The12

extracted feature vectors for each subject are concatenated and labeled13

to form a feature matrix. The generated feature matrix is fed for14

classification.15

2.3. Classification16

The feature matrix obtained at feature extraction stage is further17

subjected to classification with a 10-fold cross-validation to reduce18

overfitting [37,38]. We have chosen a medium Gaussian kernel-based19

support vector machine for classification. Gaussian kernel aids to clas-20

sify the data with no prior knowledge and also helps to improve the21

classification of complex data. For our data, Gaussian kernel yielded22

better separation in higher dimension as compared to other kernels23

(Refer Table 4). Typically, the classification of data can be achieved24

depending on the polarity of the hyperplane function and can be given25

by:26

𝐻(𝑝) =
𝑀
∑

𝑖=1
𝑤𝑖𝐾(𝑝, 𝑞𝑖) + 𝑏, (4)27

where 𝑤𝑖, 𝑏 and 𝑞𝑖 are the weights, bias and the support vectors28

respectively. The kernel function (𝐾(𝑝, 𝑞𝑖)) for the Gaussian SVM is29

defined as [39],30

𝐾(𝑝, 𝑞𝑖) = exp
(

−
(𝑝 − 𝑞𝑖)2

2𝜎2

)

. (5)31

2.4. Performance measurement32

The various performance parameters used in this work are accuracy,33

sensitivity, specificity, precision and F1 score [40,41].34

3. Results and discussion35

The presented approach was implemented on a personal computer36

equipped with Intel (R) Core (TM) CPU @2.30 GHz 2.30 GHz, 8GB37

RAM and Windows 10 (64 bit) operating system. The classification was38

carried out using MATLAB R2019b software, with no other processes39

running in parallel. The training time and the prediction rate observed40

for this method is tabulated in Table 3. Medium Gaussian kernel-41

based SVM classifier was used for the classification. It can be observed42

from Table 4, that the Gaussian kernel yields higher accuracy as43

compared to other kernels. Thus making it a better choice for the data44

under consideration. Moreover, to reduce the over-fitting phenomenon,45

10-fold cross-validation was implemented.46

The confusion matrix for the balanced data set resulted after the47

classification process is shown in Fig. 3. The performance parameters48

evaluated from the confusion matrix are tabulated in Table 5. We have49

obtained the average accuracy of 72.35% for balanced data set and50

87.45% accuracy for the unbalanced data set. The clinical parameters51

obtained for comparison of balanced and unbalanced data set are52

Table 3
Training time and prediction rate using the proposed method for balanced data set
with medium Gaussian SVM.

Training time (s) 69.032
Prediction Speed (observations/s) 6000

Table 4
Accuracy values for different kernels of the support vector machine.

Kernel Accuracy (%)

Linear 70.57
Quadratic 71.26
Cubic 64.52
Gaussian 72.35

Table 5
Performance parameters for the balanced data set and Gaussian Kernel.

Performance parameter Value (%)

Accuracy 72.35
Sensitivity 76.76
Specificity 69.19
Precision 64.11
F1 Score 69.87

Table 6
Comparison of accuracy, specificity and sensitivity using the balanced and unbalanced
data set.

Data set Accuracy (%) Specificity (%) Sensitivity (%)

Balanced 72.35 ± 0.20 69.19 ± 0.30 76.76 ± 0.20
Unbalanced 87.45 ± 0.20 52.09 ± 0.10 87.75 ± 0.20

Fig. 3. Confusion matrix for the proposed method using the balanced data set. (Label
0: B-phase, Label 1:A-phase).

shown in Table 6. It can be seen from the table that the specificity and 53

sensitivity values differ significantly for unbalanced and balanced data 54

sets. The receiver operating characteristics [42] for balanced data set 55

is shown in Fig. 4. 56

The significant RE features were obtained by performing a feature 57

ranking. This was achieved by independent evaluation criterion which 58
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Fig. 4. Receiver operating characteristics for the proposed model using the balanced
data set.

Table 7
Summary of cumulative effect of features using the feature ranking with the balanced
data set.

Percentage of features Performance parameters (%)

Accuracy Sensitivity Specificity Precision F1 score

10 68.31 72.77 65.31 58.52 64.87
20 69.01 73.89 65.79 58.80 65.49
30 70.17 74.42 67.18 61.47 67.33
40 71.75 76.45 68.47 62.86 68.99
50 71.87 76.23 68.75 63.55 69.32
60 72.03 76.39 68.90 63.77 69.51
70 72.20 76.38 69.17 64.28 69.81
80 72.28 76.56 69.18 64.22 69.85
90 72.30 76.49 69.25 64.39 69.92
100 72.35 76.76 69.19 64.19 69.87

Table 8
Subject-wise classification results. The data is balanced for each subject (Refer Table 2).

Subject name Performance parameters (%)

Accuracy Sensitivity Specificity Precision F1 score

n1 78.30 83.20 74.65 70.90 76.56
n2 73.39 77.10 70.58 66.56 71.44
n3 80.46 84.65 77.17 74.41 79.20
n5 78.98 83.05 75.80 72.82 77.60
n10 64.15 63.47 64.90 66.67 65.03
n11 72.59 72.48 72.70 72.84 72.66

operated on sample means hypothesis called Student’s t-test crite-1

rion [43]. In this method, the features are ranked based on the values2

of two-sample t-test with pooled variance estimates. The top features3

are combined based on their ranks and the cumulative performance is4

tabulated in Table 7. The performance gradually improved with the5

combination of features. The accuracy versus the top features is plotted6

in Fig. 5. The increment in accuracy with the number of features can7

be observed in this figure. Merely 40% of total number of features were8

able to yield an overall accuracy of >71.8%.9

Along with the analysis of combined data for all 6 subjects, we10

present the subject wise performance. The performance parameters for11

all the subjects are shown in Table 8. The highest accuracy of 80.46%12

was obtained for the subject n3. Table 9 shows the comparison of the13

Fig. 5. Accuracy (%) versus number of features obtained using Students’ t-test based
feature ranking technique for the balanced data set.

results obtained through the proposed method for both balanced and 14

unbalanced data set (refer Table 6). It should be noted that in the 15

previous works the same data set [8,27] has been utilized. It can be seen 16

that the deviation in the values of accuracy, specificity and sensitivity 17

is least by this suggested technique. 18

4. Conclusions 19

Cyclic alternating pattern (CAP) assists in effective analysis of sleep 20

quality of a person. It also assists in the analysis of many cerebral 21

disorders like sleep apnea, narcolepsy, etc. In this paper, we present a 22

Wigner–Ville Distribution based feature extraction for the classification 23

of CAP phases using EEG signals. The data set used in this study 24

has been balanced to have equal A-phase and B-phase data samples. 25

The A-phase has internally balanced sub-phases such that each of the 26

sub-phase A1, A2 and A3 have equal data samples. The samples are 27

randomly selected from the subjects. We have used medium Gaussian 28

support vector machine for classification. Moreover, the 10-fold cross- 29

validation technique is used to reduce the overfitting phenomenon. The 30

proposed model is able to achieve the average classification accuracy 31

of 72.35% for balanced data set and 87.45% for unbalanced data 32

set. We have found that, the difference between the specificity and 33

sensitivity are lower for balanced data as compared to the unbalanced 34

data. The clinically significant features are selected using the Student’s 35

t-test. It was observed that the combination of features arranged in 36

the decreasing order of their significance improved the classification 37

performance. Apart from the combined analysis, we have also presented 38

a subject-wise analysis. It can be noted from our results that, the 39

deviation in accuracy, specificity and sensitivity is significantly lower as 40

compared to the previously reported methods that used the same CAP 41

sleep database. The proposed algorithm for CAP phase classification is 42

found to be an efficient method which can assist the medical experts 43

in easy analysis of CAP phases, and subsequently diagnose various 44

cerebral problems. 45
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Table 9
Comparison with the state-of-the-art methods for automated phase classification of cyclic alternating patterns of sleep (ACC = Accuracy, SPE = Specificity and SEN = Sensitivity).

Author Technique Sampling frequency
(Hz)

Number of samples Performance parameters Remarks

Mendez et al. [15] k - Nearest
neighbors classifier

100 Unbalanced data
A phases: 3963

ACC = 80.00%
SPE = 80.00%
SEN = 70.00%

KNN based classification wrap approach for feature
selection.
Pre-processing and post-processing stages involved.

Navona et al. [17] Recognition based
on pre-decided
thresholds

128 Unbalanced data ACC = 77.00%
SPE = 90.00%
SEN = 84.00%

Pre-processing and post-processing stages involved.

Mariani et al. [18] ANN classifier along
with ‘‘EEG
segmentation"
variable

100 Unbalanced data ACC = 87.19 ± 2.48%
SPE = 90.49 ± 2.80%
SEN = 69.55 ± 6.60%

Results mentioned for ANN pre-processing and
post-processing steps involved.
Large deviation in the values of ACC, SPE and
SEN.

Mariani et al. [22] Machine learning
classifiers (SVM,
AdaBoost, LDA) and
ANN

100 Unbalanced data
A-phase: 26305
B-phase: 214,124

ACC = 84.90 ± 4.80%
SPE = 86.60 ± 6.30%
SEN = 72.50 ± 10.90%

Results mentioned for LDA
large deviation in the values of ACC, SPE and SEN

Hartmann et al. [21] Variable long
short-term memory
(LSTM) network

128 Both balanced and
unbalanced data

ACC = 82.42 ± 6.59%
SPE = 83.90 ± 8.95%
SEN = 75.28 ± 12.00%

The results are shown for Balanced data using
LSTM.
Pre-processing and post-processing stages used.
Large deviation in the values of ACC, SPE and
SEN.

This work Wigner–Ville based
entropy features.

512 Balanced data
9306
(A phase: 4653
B phase: 4653)
(A = A1(1551)
+A2(1551)
+A3(1551))

ACC = 72.35 ± 0.20%
SPE = 69.19 ± 0.30%
SEN = 76.76 ± 0.20%

10-fold cross-validation used no pre-processing or
post-processing required.
Less deviation in the values of ACC, SPE and SEN.

Unbalanced data
71862

ACC = 87.45 ± 0.20%
SPE = 52.09 ± 0.10%
SEN = 87.75 ± 0.20%
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