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Abstract— Noise type and strength estimation are important
in many image processing applications like denoising, compres-
sion, video tracking, etc. There are many existing methods for
estimation of the type of noise and its strength in digital images.
These methods mostly rely on the transform or spatial domain
information of images. We propose a hybrid Discrete Wavelet
Transform (DWT) and edge information removal based algorithm
to estimate the strength of Gaussian noise in digital images. The
wavelet coefficients corresponding to spatial domain edges are
excluded from noise estimate calculation using a Sobel edge
detector. The accuracy of the proposed algorithm is further
increased using polynomial regression. Parseval’s theorem math-
ematically validates the proposed algorithm. The performance of
the proposed algorithm is evaluated on a standard LIVE image
dataset. Benchmarking results show that the proposed algorithm
outperforms all other state of the art algorithms by a large
margin over a wide range of noise.

Index Terms— Gaussian noise, noise estimation, DWT coeffi-
cients, edge detection, polynomial regression.

I. INTRODUCTION

IN THE modern era of digitization, digital images and
documents contribute to a large subset of the generated

digital data. The easy availability of cameras, imaging devices,
and the ever-decreasing cost of memory has enabled humans
to capture images readily. As imaging technology advances,
the expectations of the quality of images are also increasing.
Although the imaging sensor always tries to capture the fine
and exact details in an image, it is inherently accompanied
by specific amounts of noise. The strength of this noise is
significantly less and frequently not perceivable by the human
vision. But in relatively more demanding and convoluted
conditions like low ambient light, fast-moving object, etc.,
the conspicuity of noise increases drastically. There exist many
algorithms to drastically remove this noise but they require an
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accurate estimate of noise present in the image [1] [2] [3] [4].
Thus, the image noise should be estimated accurately in order
to obtain noise-free images.

The accurate noise level estimation results in better quality
images using denoising algorithms. This is immensely helpful
in precision demanding applications like biomedical imag-
ing [5] [6], noise removal in astronomical images [7] and
satellite images [8]. A few neural network-based approaches
perform the denoising operation without a noise estimate. But
the need for noise estimate in these algorithms is compensated
by the neural network which requires a lot of training data and
the performance is dependent on training efficiency [9].

Noise estimation in digital images has invited a fairly
high amount of research attention. It is increasingly finding
its applications in different problems and tools of Computer
Vision, commercial photography, etc. The estimation of the
noise level enables us to find suitable parameters for image
denoising and also rating the visual quality of images for
commercial applications.

II. RELATED WORK

Noise estimation algorithms can be categorized into spatial
domain and transform domain techniques. The spatial domain
techniques directly use the pixel values to determine the
amount of noise present in an image. These techniques mainly
try to exploit the local structural characteristics of image
contents. Each pixel is related to at least one of its neighboring
pixels in a natural image. The presence of noise disturbs
this correlation between adjacent pixels. This deviation is the
main indicator of the amount of noise present in an image.
On the other hand, transform domain techniques transform the
input image into a new domain and the transform coefficients
where noise and image characteristics are easily separable
are used for noise estimation. This separability of coefficients
corresponding to noise and the image content leads to bet-
ter noise estimation algorithms. But the transform computa-
tional overhead increases the computation complexity of these
algorithms.

The spatial domain techniques for noise estimation rely
totally on the variation of pixel values in the input image.
These algorithms either use the complete image information
at once or use patch-based statistics to determine the noise esti-
mate. The spatial domain algorithms cannot directly segregate
the noise component from the image information accurately.
Additionally, the patches with minimum image contents are
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Fig. 1. Standard images corrupted by noise of standard deviation σ = 20.

chosen to determine the noise estimate. But this increases
the computational cost as the variance of all small image
patches need to be calculated to determine the lowest variance
patch [10]. This model doesn’t give high estimation accuracy
for the standard deviation of noise greater than 15. Patch-based
algorithms also separate the noise component using techniques
like Principal Component Analysis (PCA) [11]. Another tech-
nique to estimate noise using patch-based algorithms is to use
a threshold to select weak textured patches, i.e. patches with
minimum image content. Though this process is computation-
ally strenuous, it results in a better performing algorithm [12].
Another spatial domain approach integrates statistical sam-
pling theory concepts with the Gaussian distribution nature
of noise to obtain the noise estimate [13]. This approach uses
relatively lesser pixel information as against other algorithms
that employ the complete test image for noise estimation.

One of the simplest image noise estimator emerged from
the study related to statistics of Gaussian distribution of
noise. It was observed that the image noise energy mostly
gets confined to high pass wavelet transform coefficients.
It was found that even a simple statistical parameter like
the median of transform domain coefficients was sufficient
to efficiently determine noise present in an image with fair
accuracy [14]. Though very simple to use, this method lacked
the noise level estimation accuracy for high noise levels
(σ > 40). Researchers tried to improve noise estimation
accuracy by slight modifications to the wavelet-based thresh-
olding approach but the improvement in performance was only
marginal [15]. Also, it was tested for a limited noise stan-
dard deviation range. Along with wavelet transform, Discrete
Cosine Transform (DCT) was also used to determine the noise
level of an image [16]. In the case of DCT, instead of the
commonly used central tendency (median), kurtosis was used
as an indicator of the image noise strength. The stability of
the performance is unknown as the algorithm was presented
for a limited noise range.

The general strategy to save computations is to use small
size image patches with minimum variance for noise estima-
tion. It is assumed that these patches have a minimum contri-
bution towards variance due to the image content. A slightly
different approach has also been employed where a particle fil-
ter is used to find large homogeneous regions in an image [17].
This method lacks the noise level estimation accuracy for high

noise levels (σ > 40). Large heterogeneous image patches
can also be used for noise estimation. One such estimator
uses Median Absolute Deviation (MAD) of heterogeneous
patches to indirectly calculate image noise [18]. Statistical
analysis of image patches also revealed that there is a strong
correlation between the noise strength and the eigenvalues of
the covariance matrix of that patch [19]. On similar lines,
image patch eigenvalue distribution of the covariance matrix
also provides effective noise estimation [20].

Minimum variance image patches effectively indicate noise
as there is a minimum intrusion from image contents. These
patches mostly belong to the smooth regions of the image.
A signal-dependent noise model was trained from the local
mean and variance of these patches to estimate the noise [21].
To further reduce the effect of image contents, boundary blur
is used to smooth segmentation edges. Affine reconstruction
model is then applied to extract noise strength from the
processed patches [22]. The selection of suitable image patches
was decided based on the rank of each patch. The low-rank
patches along with Principal Component Analysis (PCA) also
leads to a fair estimation of noise strength [23].

Other innovative approaches include a finite-difference filter.
This method tries to remove the image content which ulti-
mately leaves noise for easier estimation [24]. An interesting
observation of Natural Scene Statistics (NSS) is that the
variance of normalized DCT coefficients of natural images is
scale-invariant. Thus, the presence of noise can be determined
by observing the variance of normalized image DCT coeffi-
cients [25]. In the case of highly textured images, the lowest
energy DCT block of size 8 × 8 is also used as a measure
to determine the noise estimate. This low energy DCT block
represents the spatial part of the image where the contribution
of texture is minimum [26]. A patch-based DCT approach
is suitable to extract the noise component of an image but
the performance of such an approach depends on the patch
size [27]. DCT also has a property of high kurtosis and scale
invariance for natural images. Using this property, the noise
component can be calculated using the statistics of DCT coef-
ficients [28]. A training model-based approach using DCT
and Wavelet Transform coefficients was also used for noise
estimation. In this work, the Generalized Gaussian Distribution
is used to fit the transform domain coefficients with respect
to the pristine images transform domain coefficients [29].
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Fig. 2. Proposed method for estimation of noise.

Adaptive estimation of image noise is also possible using
Singular Value Decomposition (SVD) tail statistics [30]. This
algorithm is specifically designed to achieve higher estimation
accuracy at low noise levels (σ ≤ 15) only.

Texture representation tools are also used to select the
optimum region of an image for noise estimation. Gabor
filter-based techniques use its directional property to rep-
resent the color and texture to estimate noise by skipping
the invalid pixels [31]. Such approaches try to reduce the
computations by filtering out the invalid pixels from noise
computation but the pre-processing steps itself add up a
significant amount of computational overhead to the algorithm.
Scattering transform-based features are also used to extract
the texture region from an image. Scattering transform is a
translation-invariant descriptor which yields the local texture
of an image [32].

The research in the area of noise estimation is limited
to the low level of noise and noise estimators for the high
magnitude of noise standard deviation (σ > 40) have not been
published widely. The published literature tried to minimize
image contents using only minimum variance in the spatial
domain and high frequencies in the transform domain. The
variations in noise estimates due to image edge magnitudes
were overlooked in the published literature. The non-linear
relation between noise features and estimates was not con-
sidered in the previous work. This resulted in considerably
inaccurate noise estimates.

In the recent years, neural network based approaches have
emerged to be effective in noise estimation. The neural net-
work based algorithms rely on the extent of training data to
obtain an acceptable accuracy. One of the initial attempts of
noise estimation used a fuzzy system to process three statistical
parameters [33]. It was a basic fuzzy rule based system
to optimize the noise estimation problem. Genetic algorithm
in combination with Extreme Machine Learning (ELM) is
used for estimation of signal dependent noise such as Rice

noise [34]. This algorithm shows promising results for accu-
rate noise estimation the accuracy is tested till true noise stan-
dard deviation of 30. Another approach assumed that the noise
strength affecting each pixel is different and followed a deep
convolutional neural network architecture for pixelwise noise
estimation [35]. This approach used a stack of customized
residual blocks independent of any pooling step. Another
recent approach used particle swarm optimization to determine
the optimal parameters of Singular Value Decomposition for
noise estimation [36].

In this paper, we propose a novel method for the estimation
of noise in digital images using edge energy removal from 1st

level image DWT coefficients. Our approach utilizes a hybrid
of spatial domain edge information suppression and transform
domain coefficients’ statistics. Polynomial regression is used
to compensate for the no-linearity between noise features and
noise estimates. Thus the estimation error drastically reduces
without the excessive computational overhead and over a wide
range of noise standard deviation. A detailed analysis using
Parseval’s theorem is provided to further strengthen our results.

The paper is organized as follows: Section II gives a brief
overview of the past work in this research area. Section III
discusses the basics of the wavelet transform, edge detector,
and the polynomial regression. Section IV presents the pro-
posed model for the estimation of noise along with the required
mathematical analysis. Performance benchmarking is included
in Section VI and the paper is concluded in Section VII.

III. SPATIAL AND TRANSFORM DOMAIN OPERATIONS

The proposed algorithm is a hybrid approach that uses
both; spatial as well as transform-domain information. The
transform domain information is obtained using the 1st level
Discrete Wavelet Transform (DWT) [37]. The spatial char-
acteristics of image are obtained using the Sobel edge detec-
tor [38]. The accuracy of the noise estimate is further improved
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Fig. 3. Energy distribution of Gaussian noise in 2D.

using regression [39]. This section presents a brief introduc-
tion to all these topics.

A. Wavelet Transform

Wavelet transform decomposes a signal into its sub-bands
using a series of high-pass and low-pass filters. As noise is
generally categorized as a high-frequency component, it is eas-
ier to separate it from the signal using wavelet transform [37].
The decomposition of frequency content depends on the num-
ber of levels of DWT. A signal x(n) can be decomposed into
high-pass yhigh and low-pass ylow components using high-pass
filter g and low-pass filter h as presented in equation 1.

yhigh[k] =
∑

n

x[n].g[2k − n]

ylow[k] =
∑

n

x[n].h[2k − n] (1)

As an image is a two dimensional signal, DWT is applied
in parts, i.e., separate filtering operation on rows and columns.
As the output of high-pass and low-pass filters contain redun-
dancy and need to have multi-resolution, a down-sampling
step is added after filtering. The resulting sub-bands contain
horizontal, vertical and diagonal edge information.

The DWT analyzes the signal at different frequency bands
with different resolutions by decomposing the signal into
coarse approximation and detail information. We use the Haar
wavelet as a basis function for decomposing an image into the
corresponding sub-bands [40]. Haar wavelet is the simplest
wavelet in the wavelet family and can be defined as a step
function ψ(t) as,

ψ(t) =

⎧⎪⎨
⎪⎩

1 0 ≤ t < 1/2

−1 1/2 ≤ t < 1

0 otherwi se

(2)

The reason we are using Haar Wavelet is the use of integral
images results in the fast computation of features for any
image size. It also provides a simple and efficient approach
for analyzing local aspects of a 2D signal.

The sub-band coefficients obtained by decomposing an
image using Haar wavelet represent the image content as well
as noise. Among the 4 sub-bands, the HH sub-band mainly
contains coefficients corresponding to the diagonal edges and
noise. Removal of the edge corresponding coefficients from
the HH sub-band gives an accurate estimate of noise. Details
of the process are presented in Section IV.

Fig. 4. Average energy distribution of LIVE dataset.

B. Edge Detection

Edge Detection is a method of determining boundaries
between different objects in an image. It basically operates by
detecting discontinuities at the pixel levels in a local neigh-
borhood. Image segmentation and data extraction in image
analytical areas like computer vision, image interpretation, etc
are achieved using edge detection as a primary tool. The edge
detection methods can be roughly categorized into two classes;
Gradient and Laplacian.

The difference between these methods branches from the
mathematical formulations itself, i.e. the number of derivatives
on the image vector. The gradient method works by finding
the extremum values of the first derivative of the image. The
Laplacian method searches for the zero crossings in the second
derivatives of the image to detect edges [41]. Although these
essentially represent similar mathematical conditions, different
improvements like a change of operators lead to a better
quality of edge detection for different applications. Various
edge detection operators like Canny, Prewitt, Robert and Sobel
have been introduced [42]. Mathematically, for an image
function, f (x, y), the gradient magnitude, g(x, y) and the
gradient direction, �(x, y) are computed as:

g(x, y) ∼= (�x2 +�y2)
1
2

�(x, y) ∼= atan

(
�y

�x

)
(3)

where,

�x = f (x + n, y)− f (x − n, y)

and,

�y = f (x, y + n)− f (x, y − n)

In the proposed work, we use the Sobel operator for edge
detection. Sobel operator is a more efficient choice for imple-
mentability on hardware, as compared to the computationally
heavy Laplacian methods. This is backed by the empirical
observations obtained using different operators (like Canny,
Roberts, Prewitt [42]) during our experiments.

C. Polynomial Regression

Given a set of points, polynomial regression is a process
of structuring a graph or a mathematical function, which best
accommodates the input points. Again, this structuring might
also be subject to certain constraints or parameters, which may
or may not affect the basic pattern of the resulting graph or
mathematical function. Polynomial regression is one of the
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Fig. 5. Estimation before polynomial regression on standard images.

most widely used statistical tools in the research community
for handling non-linear system outputs.

Although there are a lot of traditional polynomial regression
methods, the one which we use in this paper is the Root Mean
Square Error Minimization Method (RMSE). Mathematically
let yi indicate observed value and y ′

i indicate the predicted
value for the i th observation. With the total number of obser-
vations being n, the RMS Error/Deviation [43] is given in,

RM SE =
√∑n

i=1(y
′
i − yi )2

n
(4)

D. Noise Estimation Using DWT

Noise estimation using DWT is a multi-step process.
It begins with obtaining an initial estimate using the basic
DWT algorithm [14]. This algorithm estimates the Gaussian
noise in an image using the median of absolute value of DWT
coefficients as in equation 5.

σDW T = median(abs(W ))

0.6745
(5)

σDW T is the image noise estimate obtained from HH
sub-bands of 3 level wavelet coefficients represented by W .
But the accuracy of this estimate is low due to the presence
of coefficients corresponding to diagonal image edges in HH
sub-band (W ). The accuracy further reduces at higher noise
levels.

IV. PROPOSED NOISE ESTIMATION METHOD

The methodology of the proposed work is based on elimi-
nating the limitations of the basic DWT based algorithm. The
maximum energy of diagonal edges and noise present in an
image gets concentrated in the HH sub-band of DWT.

Along with noise energy, the HH sub-band also contains
coefficients corresponding to the diagonal edges present in
the image. This causes an unpredictable noise estimation
error as the number of edge pixels varies with each image.
We exploit this information by removing the HH sub-band
coefficients corresponding to edges. We use the Sobel edge
detector [44] to first obtain an edge map of the image. The
edge map is down-sampled along rows and columns to match

Fig. 6. Estimation after polynomial regression on standard images.

the dimensions of the HH sub-band. A dot product of the HH
sub-band and inverted down-sampled edge map gives us the
modified HH sub-band that contains coefficients corresponding
to only noise. We use the statistics of the modified HH
Sub-band coefficients to obtain the initial estimate of noise
(σinit ). The accuracy of the initial noise estimate is further
improved using polynomial regression. The HH sub-band
analysis is mathematically backed by Parseval’s theorem which
equates the energy of a signal in different transform domain
representations. We have experimentally validated Parseval’s
proposition on LIVE dataset images. The energy distribution
of natural images is presented in Fig 4. Fig 3 presents
the energy distribution of zero-mean Gaussian noise in the
four DWT sub-bands. Flowchart of the proposed method is
summarized in Fig. 2.

A. Initial Estimate Using DWT

In the proposed algorithm, instead of using median of the
DWT HH sub-band coefficients, we use the energy conserva-
tion property across different domains to obtain a better noise
estimate. An experimental analysis of the same is presented
further in this section.

To remove the estimation error caused due to edges, we first
obtain the location of edges using a Sobel edge detector in
the form of a mask. We then re-size the edge map (E M) to
match the size of the HH sub-band (W ) obtained using wavelet
decomposition. The re-sized edge-map E Mr is achieved by
down-sampling the edge-map (E M) by 2 along rows as well
as columns. Since a practical edge is rarely single pixel thick,
we dilate the edge map so that a better representation of the
actual edge width can be obtained. The dilated edge map
E Mrd is obtained by dilating the edge map (E M) by a
constant k as in equation 6.

E Mrd = E M ⊕ k (6)

The constant k controls the removal of edge coefficients
from the HH sub-band. A lower value of k is unable to
remove some of the coefficients corresponding to unsharp
edges whereas a higher value of k removes the coefficients
corresponding to noise. This leads to an underestimation of
noise. The effect of parameter k on the performance of the
proposed algorithm is included in Section V.
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We obtain an inverted edge-map (E Mrdi ) from this re-sized
dilated edge-map as in equation 7.

E Mrdi = 1 − E Mrd (7)

In the re-sized inverted dilated edge-map, spatial domain
edge locations are represented by zeros and non-edge locations
are represented by ones. This inversion help in directly remov-
ing the edge coefficients from the HH sub-band by Hadamard
product of HH sub-band coefficients and the inverted re-sized
edge-map as presented in equation 8.

Wne = W ◦ E Mrdi (8)

Wne represents the HH sub-band coefficients corresponding
to non-edge region present in the image.

B. Relation Between DWT Coefficients and Noise Strength

We conducted an experiment to determine the distribution
of noise energy in the DWT sub-bands. For this, we generated
multiple 2D random variables of size m × n having Gaussian
distributed noise values with standard deviation σ . It was
observed that the average noise energy present in the spatial
domain gets equally distributed among the four sub-bands in
the wavelet domain. Fig 3 represents the average noise energy
distribution among the DWT sub-bands. This distribution of
energy is in accordance with Parseval’s theorem [45] which
states that L2 norms of a function in spatial domain and
transform domain are equal i.e., the sum of squared values in
spatial domain is equal to the sum of squared coefficients in
the transform domain. This can be mathematically represented
as,

∞∑
n=−∞

|x[n]|2 = 1

2

∫ π

−π
|X (e jω)|2dω. (9)

Thus extracting noise energy from any one band is sufficient
to determine the total noise energy or noise strength.

For an image I corrupted by zero-mean Gaussian noise of
standard deviation σn , the mean value of the noisy image In

will not change as the noise is zero mean. In the wavelet
domain, the mean value of the image contributes to the LL sub-
band. The remaining sub-bands constitute the edge informa-
tion. As seen in Fig. 3, the noise energy is equally distributed
among the sub-bands. Considering only the HH sub-band,
the coefficients correspond only to noise and the diagonal
edges. As such, extracting noise information from the HH
sub-band by simply removing the coefficients corresponding
to edges using equation 8 is reliable. In other words, the edge
removed HH sub-band (Wne) contains 25% or 1/4th of the
noise energy as presented in equation 10.

σ 2
ne

= 4

N2 ×
∑

i, j∈H H

W 2
ne(i, j) (10)

We observed the energy distribution in the sub-bands
in 29 different LIVE dataset images. As seen in Fig. 4,
the average energy in the HH sub-band is 0.07% of the total
energy of the image. Thus, even on adding this amount of
energy to the HH sub-band of noisy matrix in Fig. 3, there
will be a negligible change in the overall energy present in the

zero mean HH sub-band. Thus, we can validate the correctness
of equation 10 for the noise estimate σ 2

ne
.

In terms of standard deviation, equation 10 can be re-written
as,

σne = 2

N
×

√ ∑
i, j∈H H

W 2
ne(i, j) (11)

The above equation holds true even though the contents of
image are not zero mean. This is because the HH sub-band
coefficients correspond only to the edges and noise and are
independent of the mean. The basic assumption about noise is
it is zero mean and thus it does not add to the mean value of
the image.

C. Final Noise Estimation Using Polynomial Regression

The estimated noise obtained using equation 11 yields the
initial estimate of noise (σinit ). Hence forth, we use σinit as
the initial noise estimate.

σinit = σne (12)

σinit mathematically indicates the total noise that is esti-
mated to be present in the image. In practice, σinit is somewhat
different than the actual or true noise. This discrepancy in σinit

and the actual or true noise is due to the inaccuracies in edge
detection and original image texture that is misinterpreted as
noise. The Sobel edge detector does not detect the weak edges
present in an image which further contribute to error in noise
estimates. Thus, coefficients corresponding to the weak edges
remain present in Wne (as in equation 8). It is not possible
to have a perfect edge map to solve this problem of detecting
all the weak edges. Employing other edge detectors like the
Canny edge detector increases the computation cost without
any increase in noise estimation accuracy. The presence of
texture region information in the HH sub-band coefficients,
though very small, causes error in noise estimation, especially
at low noise levels. We overcome these limitations using
polynomial regression and training procedure explained in
Section III.C.

The final noise estimate (σest ) is obtained from the initial
noise estimate (σinit ) using a simple polynomial equation as
in equation 13.

σest = p1σ
4
init + p2σ

3
init + p3σ

2
init + p4σinit + p5 (13)

Details of calculating the polynomial coefficients ( p1 to p5)
are illustrated in section V.

Though classical tools like wavelet, Sobel edge detector and
regression analysis are used in the proposed algorithm, these
tools are very reliable and perform consistently for a diverse
range of noise standard deviation. The novelty of the proposed
algorithm lies in the combined use of these tools which balance
the limitations of each other. The noticeable drop in noise
estimation accuracy at low noise level (represented by the
DWT coefficients) is compensated by the regression analysis
which takes into account the effect of texture region on the
noise estimates. The regression analysis also counterbalances
for any lack in the performance of the Sobel edge detector
as it represents all the possible textures and edges that can
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TABLE I

VARIATION IN σest OVER 100 TRIALS

be present in natural images. Regression also compensates
for the saturation in estimate values at higher noise levels.
Thus regression addresses the non-linearity at lower as well
as higher noise level to yield accurate estimates over a wide
range of noise.

D. Contributions of the Paper

The proposed noise estimation algorithm is simple, compu-
tationally light and can estimate the noise in real-time. The
existing noise estimation algorithms relied solely either on
the spatial domain statistics or the transform domain data
to estimate the noise. The proposed algorithm makes use of
both, spatial as well as transformation domain operations to
obtain a reliable estimate of noise. Also, only the level-1
wavelet sub-band coefficients are used thereby reducing the
computationally overhead. Another significant contribution of
the work is its reliable noise estimation over a wide range of
noise standard deviation. The existing algorithms’ performance
was consistent but only over a limited noise level. The pro-
posed work also experimentally validates that the HH sub-band
contains the least amount of signal energy and thus is the
most suitable sub-band for noise estimation. The most suitable
edge detectors specific for noise estimation are quantitatively
determined in the proposed work.

V. EXPERIMENTS, RESULTS AND DISCUSSIONS

The proposed algorithm is validated on standard images
from LIVE dataset [46] containing 29 pristine images. The
images in LIVE dataset contain a wide variety of objects
and structures which are available in day-to-day life. We use
the pristine (noise-less) images from the LIVE dataset in
our experiment as zero noise images. The proposed noise
estimation method is validated on a computer system with the
following specifications: Intel(R) Core(TM) i5-7200U proces-
sor operating @ 2.50GHz, with 8.00GB RAM on Windows 10
Home operating system using MATLAB.

Before actual validation of the proposed algorithm, the poly-
nomial regression coefficients are obtained using a set of
standard images shown in Fig. 1 (lena, barbara, cameraman
and peppers) expected to contain a broad variety of real-life
textures. Known noise levels (σadded) are added to these
images and the initial noise estimates (σinit ) are obtained
using equation 12. This process is repeated over 100 trials
for a wide range of noise levels to obtain a robust σinit

vector corresponding to each of the four images. Element
wise average of the σinit vectors results in a single vector.
This vector along with the added noise level (σadded) vector is

TABLE II

EFFECT OF k ON THE ALGORITHM’S PERFORMANCE

used to obtain a mapping function using polynomial regression
as discussed in Section III.C. The polynomial coefficients for
equation 13 for estimation of Gaussian noise are obtained as
shown in equation 14;

p1 = −5.089 × 10−08; p2 = 1.692 × 10−05;
p3 = −0.001871; p4 = 1.386; p5 = −0.6109; (14)

The coefficients obtained using these images ensure max-
imum robustness and accuracy of the proposed algorithm.
The images used to obtain the regression coefficients and the
images used for validation are mutually exclusive. The noise
estimate before and after the regression are presented in Fig. 5
and Fig. 6 respectively.

The optimum value of edge dilation parameter k is experi-
mentally obtained by varying k and observing the performance
of the proposed algorithm on LIVE dataset. The experimental
results are presented in Table II. The constant k ensures
the optimum removal of coefficients corresponding to edges
from HH sub-band. A lower value of k retains some of the
coefficients corresponding to edges whereas a higher value
of k removes the coefficients corresponding to noise. From
Table II, it can be observed that the performance of the
proposed algorithm is optimum for k = 2 which represents
optimum edge energy removal from the HH sub-band.

Any other edge detector can also be used for edge energy
removal before noise estimation. A comparative analysis of all
the major edge detectors [42] along with Sobel is experimen-
tally carried out and presented in Table IV. The edge detectors
yield comparable results. Though the noise estimation error
for the Roberts edge detector is minimum, the Sobel edge
detector is marginally faster. As the difference in performance
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TABLE III

PERFORMANCE OF THE PROPOSED MODEL ON LIVE DATASET FOR GAUSSIAN NOISE ESTIMATION AND % ERROR IN σest

Fig. 7. Benchmarking of proposed method on LIVE dataset using average of 100 trials.

is marginal, we chose the Sobel edge detector due to its lower
computation time.

For validation of the proposed algorithm, zero-mean
Gaussian noise of different standard deviation (σadded) from

10 to 100 are added one by one to the images and the proposed
algorithm estimated the noise levels. The accuracy of the
proposed algorithm is presented in terms of percent error
in noise standard deviation estimation. The quantitative
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Fig. 8. Average % error in (Eavg ) in noise estimation vs. σadded .

TABLE IV

PERFORMANCE USING DIFFERENT EDGE DETECTORS

performance of the proposed algorithm is presented
in Table III. It can be observed in Table III that there
is higher % error at σadded = 10. This is because natural
image textures overlap with noise and also pristine images
have inherent noise levels comparable to σadded , thus resulting
in high error. The trend in noise estimation error with the
increasing noise strength is presented in Fig. 8. It can be
observed that the estimation error drastically reduced beyond
the noise of standard deviation 20. High noise content
destructs image edges and hence there is a slight increase in
% error from σadded = 120 to σ = 140. After σadded = 140,
the noise content dominates the destroyed edge contents.

The comparative analysis of the proposed algorithm with
other state of art algorithms is presented in Table V. For a
fair comparison, we use images other than the ones that were
used to obtain the polynomial regression coefficients. All the
benchmarking algorithms were fed the same noisy images
corrupted by noise of the same known standard deviations.
The noise strength was gradually increased and the output of
all algorithms was noted. We used noise standard deviation
(or noise strength) from 10 to 100 in steps of 10. The
performance is validated in terms of average % error in
noise standard deviation estimation. The % error (E) in noise
standard deviation between the added noise level (σadded) and
the estimated noise level (σest ) is calculated as in equation 15
and presented in Table V.

E = |σadded − σest |
σadded

× 100 (15)

The average error (Eavg) in noise standard deviation
estimation for all noise levels is indicated in Table V.

TABLE V

BENCHMARKING OF THE PROPOSED METHOD FOR σest

TABLE VI

CORRELATION OF PROPOSED METHOD ESTIMATES WITH
STANDARD RESULTS ON WHITE NOISE

The benchmarking is carried out in two parts: low noise level
(σadded ≤ 30) and high noise level (σadded > 30). At lower
levels of noise, performance of the proposed algorithm is
comparable to other benchmarking algorithms. But at a higher
noise level, the proposed algorithm clearly outperforms all
other algorithms.

The variation of Eavg against σadded is presented in Fig. 7.
It can be observed that the noise estimation of the proposed
algorithm is very close to the true value. The consistency of
the noise estimation is almost perfect over a wide range of
noise.

The proposed algorithm is iterated over 100 times for the
complete LIVE dataset of images and the estimated average
mean and standard deviation is calculated out to be less
than 0.65 and 0.05 respectively as presented in Table I. This
highlights the capability of the algorithm to precisely estimate
the noise content. Random LIVE dataset images were selected
and the average error in estimation for noise from 10 to
100 with a step of 10 was presented in Table V for all
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algorithms for comparison. It can be seen that the proposed
method has much better accuracy than all the other published
algorithms.

To prove the consistency of the proposed algorithm, we cor-
related the algorithm output with known values of noise
present in the dataset of images corrupted with white noise
provided by the Laboratory of Image and Video Engineering
at the University of Texas. We also presented the correlation
results of other algorithms on the same dataset in Table VI.

The results in Table VI indicate that the proposed algorithm
outperforms the state of art algorithms for all the noisy images
present in the LIVE dataset.

VI. CONCLUSION

We propose a robust and accurate noise estimation method
for digital images corrupted by zero-mean Gaussian noise.
The proposed method selectively uses the non-edge wavelet
transform coefficients to estimate the strength of noise. The
edge coefficients are removed using the edge map obtained by
Sobel edge detector. The proposed method is mathematically
supported by Parseval’s theorem of energy conservation. The
noise estimate obtained is further improved using polynomial
regression. At moderate and high noise levels, the added noise
can be precisely estimated. At noise standard deviation of 10,
the error in noise estimates is comparatively higher. This
is because, at low noise levels, the natural image textures
are misinterpreted and considered noise. At the high noise
standard deviation of above 100, the image structures like
even strong object edges are distorted by noise affecting noise
estimation accuracy. The proposed method is computationally
light. We benchmarked the proposed method with state of
the art algorithms. The proposed method clearly outperforms
the existing methods at even less computational cost. The
proposed method can be used to bolster the performance of
other image processing algorithms like BM3D, object tracking
in videos, denoising, etc. by providing an accurate noise
estimate. An extension of this work can focus on the estimation
of other types of noise using the perceptual quality evaluation.
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