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Abstract

Parkinson’s disease is the second most common neurodegenerative disorder with diffi-

cult early stage detection. The specific diagnosis techniques for PD are not available.

It is diagnosed on the basis of the symptoms reviewed by the patients. These symp-

toms arise when 60-80% of the dopamine-producing cells are dead. Due to this fact,

the early-stage detection of PD is important. The reduction in neurons affect the EEG,

and minor abnormalities can be observed. A hybrid time-wavelet domain approach for

early-stage detection of PD using inter-channel self-similarity and multi-resolution fea-

tures extracted in the time domain and wavelet domain respectively has been proposed

in this paper. In order to extract inter-channel self-similarity, a set of correlation coeffi-

cients is extracted in the time domain. Rényi entropy and Kraskov entropy features are

extracted in the wavelet domain. Optimal biorthogonal wavelet filter bank (OBWFB)

has been used to carry out . The wavelet transform allows the utilization of the predom-

inant quadrature bandpass frequency components, resulting in the enhancement of the
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entropy features. In this paper, we have examined each feature as well as the features

in conjunction. The classification is carried out using the support vector machine of

polynomial degree 3 (CSVM). 10-fold cross-validation is exercised to reduce the over-

fitting phenomenon. The proposed method provides excellent results with accuracy,

specificity and sensitivity as 99.56%, 99.24% and 99.87% respectively. The proposed

method can be further used for diagnosis of various neurological diseases like epilepsy,

sleep disorder etc.

Keywords: Parkinsons disease, Electroencephalogram, wavelet transform, optimal

biorthogonal wavelet filter bank, correlation coefficients, Rényi entropy, Kraskov

entropy

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder in which the dopamine-

producing brain cells die, resulting in the progressive retrogression of the motors func-

tion. It is the second most common neurodegenerative disorder, first being Alzheimer.

Dopamine acts as a neurotransmitter between substantia nigra and the corpus striatum,5

which is responsible for smooth and controlled movements[1, 2, 3]. Lack of dopamine

results in the failure of transmission between the substantia nigra and corpus striatum,

leading to movement impairment [4]. The people affected by PD are mostly in the age

group of 60+, but many in the age group of 40-60 are also seen to be affected. Every

year, around 1 million people are affected by PD in India alone [5].10

Diagnosis of PD is carried out on the basis of the reviews of the symptoms given

by the patient and their medical history. These symptoms include tremors, rigidity,

bradykinesia (slow movement), postural instability, speech and writing changes [6].

The symptoms arise when 60-80% of dopamine-producing cells are dead [7]. Over the

time, these symptoms turn from mild to severe. Although many imaging techniques15

like magnetic resonance imaging (MRI), computed tomography (CT) scan, positron

emission tomography (PET) scan and DaTscans can be used for PD detection, these

techniques are expensive and require expertise. However, specific tests for PD diag-

nosis are not available. A low cost and non-invasive technique need to be devised for
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Table 1: Abbreviations

Abbreviation Definition

PD Parkinson’s Disease

EEG Electroencephalogram

RE Rényi Entropy

OBWFB Optimal Biorthogonal Wavelet Filter Bank

SVM Support Vector Machine

QSVM Quadratic Support Vector Machine

CSVM Cubic Support Vector Machine

early-stage PD detection.20

PD affected subject’s Electroencephalogram (EEG) signals might contain some mi-

nuscule abnormalities which cannot be observed by naked eyes. In this paper, these ab-

normalities in the 1-D multi-channel EEG signals are used for classification of normal

and PD subjects. The main contribution of this paper are:

• The method develops a hybrid time-wavelet domain approach for detection of25

Parkinson’s disease using EEG signals.

• For, wavelet decomposition, optimal biorthoganal wavelet filter banks have been

used. Two entropy features, Rényi entropy and Kraskov entropy have been cal-

culated for the wavelet coefficients.

• For analyzing the inter channel self-similarity, correlation coefficients have been30

calculated in the time domain.

• The method analyzes each extracted feature independently as well as in conjunc-

tion.

2. Notations and Abbreviations

Table 1 show the abbreviations that we have used in this paper.35
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3. Related Work

In recent years, many methods for PD detection were devised. These methods

can be broadly classified on the basis of the signals used for diagnosis. The signals

used mainly consisted of voice signals, gait signals and EEG signals. A parallel neu-

ral network approach was developed by Astrom et al. to utilize the voice signals for40

detection of PD [8]. The authors have reported the accuracy of 91.20±1.60%. Voice

signals were found to be widely used for PD detection. Another method was proposed

by Chen et al., who developed a PD detection method using fuzzy k-nearest neigh-

bourhood (FKNN) classifier [9]. The method proposed by them resulted in an average

accuracy of 96.02% with specificity and sensitivity as 95.53% and 96.22% respectively.45

The accuracy by FKNN was enhanced by Zuo et al. by introducing swarm optimization

[10]. This step resulted in increased accuracy of 97.47%. Another method that has used

voice signals was implemented by Ma et al. [11]. The authors deployed a kernel based

extreme learning machine (KELM) that resulted in an average accuracy of 99.49%.

Another class of signals used is gait signals. Daliri used the gait signals in order to50

identify the PD patients [12]. The Chi-square distance kernel of gaits method used by

Daliri resulted in an accuracy of 91.20% with specificity and sensitivity 89.92% and

91.71% respectively. Some of the methods developed made use of EEG signals, one

such method was devised by Yuvraj et al. [13]. The authors used bispectrum fea-

tures for classification of PD affected EEG signals, resulting in classification accuracy55

of 99.62%. Recently, Oh et al. employed a 13 layer convolutional neural networks

(CNN) for PD detection, reporting an average accuracy of 88.25% with specificity and

sensitivity being 91.77% and 84.71% respectively[13].

Although, EEG signals have been used for detection of various other diseases like

sleep disorder, epilepsy etc [14, 15, 16, 17], it can be observed that very limited work60

for PD detection has been developed using EEG signals. In this work we try to capture

the minuscule abnormalities in the EEG of the PD affected people to distinguish the

normal and PD affected EEG signals. Entropy features have been widely used for anal-

ysis of biomedical signals[18, 19, 20, 21, 22, 23, 24, 25]. Permutation Rényi entropy

was used to differentiate interictal states from ictal states by implementing spatial tem-65
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poral analysis of the EEG signals by Mammone et al. [21]. Sharma et al. have used

various entropy parameters like average Shannon entropy, average Rényi entropy, aver-

age approximate entropy, average sample entropy and average phase entropy to classify

the focal and non-focal EEG signals [18]. The authors have decomposed EEG signals

using the empirical mode decomposition (EMD) to extract intrinsic mode functions70

(IMF). To differentiate the normal and the coronary artery disease (CAD) patients, Ku-

mar et al. have extracted the KNN entropy and fuzzy entropy from the FAWT decom-

posed sub-bands of the HRV [23]. Bhattacharya et al. have implemented a multi-scale

entropy measure technique by extracting Kraskov entropy (K-nearest neighbour en-

tropy) for characterization of epileptic seizure, non-seizure and normal EEG signals75

using the tunable-Q wavelet transform. We have extracted Rényi entropy and Kraskov

entropy for predominant principal frequency components of the EEG signals in the

wavelet domain to classify them as normal and PD affected. For wavelet decomposi-

tion, optimal biorthogonal wavelet filter banks have been employed. To enhance the

accuracy further, we have determined the inter-channel self-similarity of the EEG sig-80

nals by extracting the correlation coefficients as the time domain feature. Correlation

coefficients have been used for performance evaluation as well as a classification fea-

ture many times [26, 27]. In this method we have explored correlation coefficient as a

feature for characterization of EEG signals. In this proposed method, we have used a

hybrid time-wavelet domain approach for classification of EEG signals. The paper is85

further organized as follows: the method proposed and the data used in this paper is

described in detail in section 4. The results obtained are stated in section 5 which are

further discussed in section 6. The conclusions are stated in section 7.

4. Materials and Proposed Method

4.1. Database used90

EEG signals for 20 (9 men and 11 women) normal condition and 20 (10 men and

10 women) PD affected subjects were collected for a duration of 5 minutes with a sam-

pling rate of 128 Hz. In order to remove eye blinking artefacts, a threshold technique

to exclude amplitudes greater than 100µV . Sixth order Butterworth bandpass filter
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Figure 1: Work-flow for the proposed method

with forward reverse filtering method was implemented to filter a frequency range of95

1-49Hz [28]. The PD affected subjects were in the age range of 45 to 65 years with

an average period of PD of 5.75±3.52 years. The exclusion specification includes the

presence of neurological ailments like epilepsy, depression etc. The normal condition

subjects had no past records of mental or neurological disorders. The mean age of the

normal subjects was 58.10±2.95 years.100

The signal recorded for 5 minutes was divided in chunks of two seconds duration

which resulted in the total 3159 sets of EEG signals. In these sets, 1588 were the

normal condition signals and 1571 were PD affected signals.

4.2. Proposed Approach

The proposed approach is implemented in four stages. It begins with the prepara-105

tion of input data for the feature extraction stage, which is the stage one. The stage two

includes feature extraction and determination of feature matrix which is used for clas-

sification. In the third stage, the data signals are classified using the obtained features.

The fourth stage is the parameters calculation. The complete work-flow of the method

is described in Figure 1.110
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4.2.1. Data Preparation

Let D be the data matrix of size l× k, where k is the number of channels and l be

the number of samples of the EEG signal. For this method, k = 14 and l = 256. Let

Dk be the channel-wise vector, where k ∈ [1,14]. A total of 3159 signal-matrices are

available.115

The features extracted in this method are in two domains, time domain and wavelet

domain. The feature correlation coefficient is extracted in the time domain whereas the

features Kraskov entropy and Rényi entropy are extricated in the wavelet domain.

4.2.2. Feature extraction

The subsequent discussion explains the time domain and the wavelet domain fea-120

tures.

Time Domain Features:. Correlation coefficients is the feature which is extracted in

the time domain.

• Correlation Coefficients:

Correlation coefficients is a numerical measure of the statistical relationship be-

tween two random variables [29, 30, 31].

ρ(A,B) =
1

N−1

n∑
i=1

Å
Ai−µA

σA

ãÅ
Bi−µB

σB

ã
(1)

where mean of A is µA and standard deviation of A is σA. Similarly, the mean and

standard deviation of B is µB and σB respectively. Further, the correlation coefficients

in terms of the covariance of A and B are:

ρ(A,B) =
cov(A,B)

σAσB
(2)

For this experiment, to ascertain the inter-channel self-similarities, the auto-correlation125

of the input matrix, ρ(D′,D′) is calculated, where D′ is the transpose of normalized in-

put matrix (D). As ρ(D′,D′) is symmetric, it can be represented with either strictly

upper triangular or strictly lower triangular matrix, as shown in Figure 2. These el-

ements are arranged in a row vector ρ , which is considered as the first feature for

classification. This can be mathematically represented as,130
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Figure 2: Formation of correlation coefficients feature

ρ(D′,D′) = [di j]n×n

ρ = [di j]1×l ,∀ i > j (3)

where, l = n2−n
2 .

Wavelet Domain Features:. Wavelet transform have been widely used in analysis of

the biomedical signals [32, 33, 34, 35, 36, 37, 25, 20, 23]. Wavelet transform have been

used for diagnosis of various neurological diseases like epilepsy [34, 25, 20], depres-

sion [35] etc.. We have implemented the wavelet transform using optimal biorthogonal135

wavelet filter bank for the diagnosis of PD. Two features are extracted in the wavelet

domain, namely Rényi entropy and Kraskov entropy.

Optimal Biorthogonal Wavelet Filter Banks (OBWFB):. In order to perform wavelet

transform, analysis filters were constructed using the optimal biorthogonal filter banks

(OBWFB). Due to relaxation in the orthogonality condition, biorthogonal filters are

symmetric and hence allow linear phase conditions as well as the integrity of the signal.

The halfband constraint was applied to construct analysis type-1 low pass filter of the

OBWFB [38]. The perfect reconstruction condition include:

F0(z)H0(−z)+F1(z)H1(−z) = 0 (4)
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F0(z)H0(z)+F1(z)H1(z) = 2z−k,k ∈ Z (5)

Where, H0 and H1 are the analysis low pass and high pass filters respectively and F0

and F1 are the synthesis low pass and high pass filters respectively. The product filter

is defined as P(z) = zkH0(z)F0(z). The PR conditions and the product filter results into

the condition for halfband filters, given by:

P(z)+P(−z) = 2 (6)

Along with PR conditions, optimization of filters is necessary. To construct optimized

filter, objective function is defined as,

φ = aT{α1T +α2F +α3P+α4S}a

= aT Ra

(7)

Where, α j are the weighting function ({α j : 0≤α j ≤ 1,
∑

j α j = 1}); T,F,P,S,R∈

R(N+1)×(N+1) are positive definite matrices and a is defined as:

a = [h(0)
»

h(1) . . .
√

2h(N)]T1×N

Let h0(n) be the analysis lpw pass filter and f0 be the synthesis low pass filter, such

that their lengths are 2P+ 1 and 2Q+ 1 respectively. Let h ∈ R(P+1) and f ∈ R(Q+1)

be the optimization vectors, then the optimization problem for analysis low pass filter140

is given by,

• hT Rh : Cost function

• Ah = 0: Regularity constraint

• Bh = 0: Halfband constraint

• hT h = 1: Unit norm constraint145

The optimization problem for synthesis low pas filter is

• f T R f : Cost function
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• A f = 0: Regularity constraint

• B f = 0: PR constraint

• f T f = 1: Unit norm constraint150

Where, A ∈ R(Q+1)×Ms , B ∈ R(N+1)×(P−1)/2 and T ∈ R(Q+1)×(P+Q−1)/2 and A,B

and T are given as:

[A]k,l =

1 ;k, l = 0
√

2(l)2k(−1)l ;otherwise

[B]k,l =


1√
2

;k = 0,1, . . . ,N; l = 2,4, . . . ,(N−1)

0 ;otherwise

[T ]k,l =

h0[2k+2] ; l = 0

h0[2(k+1)− l]+h0[2(k+1)+ l] ;1≤ l ≤ Q

where, k ∈ [0, P+Q−1
2 ]. Using the specified conditions and constraints, h0(n) and f0(n)

were designed. The h0(n) and f0(n) are of the order 14 and 28 respectively. The

obtained filter coefficients are as shown in Table 2.155

Wavelet Transform:. Wavelet decomposition of order three was calculated using the

filters from OBWFB. The transform results in three detailed coefficients and one ap-

proximate coefficient which is used for calculation of the entropy features.

• Rényi Entropy:

Rényi entropy generalizes Shannon entropy [39]. It is also known as alpha-order

entropy. It is calculated as,

RE(Xk) =

Å
1

1−α

ã
log(

N∑
n=1

|Xk(n)|α) (8)

where, N = 256.160

Here, α 6= 1. For the presented method, Rényi entropy of order 2 is calculated

(α = 2).
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Table 2: Filter Coefficients

Index (n) h0(n) f0(n)

± 0 -0.737373124493960 -0.768532189913231

± 1 -0.457126071272320 -0.410562165837711

± 2 0 0.0939230137118358

± 3 0.127903440731053 0.115379716323613

± 4 0 -0.0808062261565235

± 5 -0.0516553232613650 -0.0472748305157014

± 6 0 0.0642848894041939

± 7 0.0121913915556523 0.0113064384044617

± 8 - -0.0300802689713363

± 9 - 0

± 10 - 0.00718058219124597

± 11 - 0

± 12 - -0.00157367235354061

± 13 - 0

± 14 - 0.000186935505391014
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So, the equation of Rényi entropy becomes,

RE =− log
( N∑

n=1

|Xk(n)|2
)

(9)

Here, Xk determine the coefficients obtained after wavelet decomposition of Dk.

• Kraskov entropy

Kraskov entropy is the estimate for the Shannon entropy[40]. It can be calculated

as:

ˆH(Xk) =−ψ(k)+ψ(N)+ log(c)+
d
N

N∑
i=1

log(ε(i)) (10)

Where, ψ is the diagamma function, c is the volume of a d-dimensional unit165

ball,ε(i) is twice the distance of xi to its kth neighbour, N is the number of bi-

variate measurements (N = 256) and Xk, input signal is the random variable in

the metric space[41]. Here, Xk are the coefficients obtained from wavelet de-

composition of Dk. The entropy features are obtained at each level of wavelet

decomposition and are further concatenated to form a vector.170

The features obtained for all the fourteen channels are concatenated to form a fea-

ture vector. The features obtained for each data matrix D together form the feature

matrix which is further sent to the classification stage.

4.2.3. Classification

After extracting the features, they are used for further classification. The classi-175

fication is effectuated using the cubic support vector machine (CSVM)[42]. Given a

labeled training data set (supervised learning) to the SVM model, the training algo-

rithm builds a model which outputs a plane which classifies the new examples[43, 44].

A dth degree kernel polynomial K(p,q) is defined as: K(p,q) = (pT q+ c)d , where

c≥ 0 is a free parameter and p and q are the vectors. For CSVM, d = 3.180

For k-fold cross-validation, the data set is divided into k groups, or folds, of ap-

proximately equal size [45]. Of the k folds, the first is taken as a validation set while

the remaining k−1 sets are used for training the model[46]. This paper uses a 10-fold

cross validation, that is, k = 10.
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4.2.4. Parameters Calculation185

For performance evaluation, various parameters are calculated from the confusion

matrix obtained after classification stage. These parameters include accuracy, speci-

ficity, sensitivity, precision, false positive rate, negative predictive value, false discov-

ery rate, F-1 score and Mathews correlation coefficient [47].

5. Results190

The presented approach was implemented on a personal computer equipped with

Intel (R) Core (TM) CPU @2.30GHz 2.30GHz, 8GB RAM and Windows 10 (64 bit)

operating system. The classification was carried out using MATLAB R2018a software,

with no other processes running in parallel. In order to easily capture the complex rela-

tionships between the data, CSVM classifier was used for the classification. Moreover,195

to reduce the over-fitting phenomenon, 10-fold cross-validation was implemented.

The training time for this method was observed to be 2.8234s. The Table 3 lists

the training time and prediction rate. Classification results into confusion matrix. The

confusion matrices are tabulated in Table 4. The confusion matrices are used for cal-

culating parameters, which are used for performance evaluation. The performance,200

in terms of classification parameters, is listed in Table 5 for both the classification

machines. We observe that the proposed method results in appreciable classification

accuracy. The classification error was observed to be 0.44%. Low classification error

and increased training time indicate the complexity of the classifier machine.

In order to evaluate the contribution of each feature, feature-wise performance is205

determined which indicate the ascendancy of RE feature over the other two. The Table

6 prognosticates the feature-wise performance for both the classifiers. The method

also studies the cumulative effect of features on classification parameters, which are

tabulated in Table 7.

Table 3: Training Time and Prediction Rates

Training Time (s) Prediction Rate (obs/s)

2.8234 26000
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Table 4: Confusion matrix

Classifier: CSVM
Predicted Label

Normal PD

True

Label

Normal 1576 12

PD 2 1569

Table 5: Parameters’ values obtained after classification

Parameters Values %

Accuracy 99.56

Specificity 99.24

Sensitivity 99.87

Precision 99.24

False Positive Rate 0.76

False Negative Rate 0.13

Negative Predictive Value 99.87

False Discovery Rate 0.76

F1 Score 99.56

Mathews Correlation Coefficient (%) 99.12

Table 6: Feature-wise parameters

Parameters ρ Ĥ RE

Accuracy (%) 97.59 98.96 99.34

Specificity (%) 97.40 98.79 99.11

Sensitivity (%) 97.79 99.12 99.56

Precision (%) 97.42 98.80 99.12

False Positive Rate (%) 2.60 1.21 0.89

False Negative Rate (%) 2.21 0.88 0.44

Negative Predictive Value (%) 97.77 99.11 99.55

False Discovery Rate (%) 2.58 1.20 0.88

F1 Score (%) 97.60 97.91 99.34

Mathews Correlation Coefficient (%) 95.19 96.84 98.67
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Table 7: Cumulative effect of features on evaluated parameters

Parameters RE RE +Ĥ RE +Ĥ+ρ

Accuracy (%) 99.34 99.27 99.56

Specificity (%) 99.11 99.17 99.24

Sensitivity (%) 99.56 99.37 99.87

Precision (%) 99.12 99.18 99.24

False Positive Rate (%) 0.89 0.83 0.76

False Negative Rate (%) 0.44 0.63 0.13

Negative Predictive Value (%) 99.36 99.11 99.87

False Discovery Rate (%) 0.88 0.82 0.76

F1 Score (%) 99.34 99.28 99.56

Mathews Correlation Coefficient (%) 98.67 98.54 99.12

6. Discussion210

The stated method implements the classification model for detection of Parkinson’s

disease using a hybrid time-wavelet domain approach. Spectral features extracted in

the wavelet domain include Rényi entropy (RE) and Kraskov entropy ˆ(H). The spatial

features include correlation coefficients (ρ).

To evaluate the performance of the features, we have implemented a feature rank-215

ing algorithm based on the class-separability criterion [48, 49, 50]. The feature vector

of size 1×203 is formed after combining the RE, Ĥ and ρ vectors. All 203 features

are ranked and the performance of the proposed method is analyzed using the top 10%,

20%, ..., 100% is features. The accuracy trends for the same are pictorially represented

in Figure 3. We observe that the accuracy increases with the increase in the number220

of features, which indicates that each and every feature contributes significantly to the

classification of the medical data set. It is also observed that the rate of increase in the

accuracy decreases with the increase in the number of features. Moreover, the dom-

inance of RE, Ĥ and ρ features in the top-ranked features is determined and listed

in Table 8. It is observed that the feature RE shows dominance over the other features225

followed by Ĥ and ρ . The results obtained from the feature ranking methodology

15



Table 8: Dominance of RE, Ĥ and ρ in the top features

Percentage of

Features (%)
RE (%) Ĥ (%) ρ (%)

10 45.00 35.00 20.00

20 37.50 32.50 30.00

30 41.67 31.67 26.67

40 43.21 34.58 22.22

50 43.56 34.65 21.78

60 36.36 32.23 31.41

70 32.39 31.69 35.92

80 33.33 28.40 38.27

90 29.67 28.02 42.31

100 27.59 27.59 44.83

0 10 20 30 40 50 60 70 80 90 100

96

97

98.2

99.1

99.56

100

Number of features (%)

A
cc

ur
ac

y
(%

)

Feature Ranking

Figure 3: Accuracy (%) versus number of features obtained using feature ranking technique
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Figure 4: Box plot for time domain feature (correlation coefficients)

Box Plots Wavelet Domain Features (Kraskov Entropy and Renyi Entropy)
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Figure 5: Box plot for wavelet domain feature (Kraskov entropy and Rényi entropy)
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Table 9: Comparison with some state-of-the-art methods

Author Technique Validation
Accuracy

(%)

Specificity

(%)

Sensitivity

(%)

Astrom et al. Parallel neural network [8] 40% holdout validation 91.20 93.00 90.50

Zuo et al.
Particle swarm optimization

enhanced fuzzy k-nearest neighbor (FKNN) [10]
10-fold cross validation 97.47 96.57 98.16

Daliri Chi-square distance kernel of the gaits [12] 2-fold cross validation 91.20 89.92 91.71

Chen et al. Fuzzy k-nearest neighbor (FKNN) [9] 10-fold cross validation 95.87 95.53 96.22

Ma et al. Kernel-based extreme learning machine (KELM) [11] 10-fold cross validation 96.35 95.89 95.72

Oh et al. Convolutional Neural Networks (CNN) [28] 10-fold cross validation 88.25 91.77 84.71

Yuvraj et al. Bispectrum features [13] 10-fold cross validation 99.62 99.25 100.00

Present Work Multiresolution and Correlation Coefficients (QSVM) 10-fold cross validation 99.56 99.24 99.87

are found to be in synchronization with the results obtained from feature-wise classi-

fication, listed in Table 6. Among the wavelet domain features, Rényi entropy feature

shows higher classification accuracy > 99%. The same can be observed from the box

plot for the RE feature (refer Figure 5). The box plot for normal subjects is placed230

higher as compared to the PD. This can be concluded by looking at the upper and lower

whiskers and the median. This distinguishing pattern is better for RE feature. The box

plots for time domain and wavelet domain features are as shown in figures 4 and 5. The

feature-wise evaluation parameters, without considering the feature ranking, are listed

in Table 6. The results are listed in the increasing order of feature-wise classification235

performance. Further, the Kraskov entropy feature shows a better performance, fol-

lowed by correlation coefficients. As mentioned earlier, the wavelet domain features

outperform the time domain feature, correlation coefficients (ρ), but ρ contributes quite

significantly in increasing the classification accuracy. In short, each feature contributes

significantly to the classification process. The progressive effect of the features are240

prognosticated in Table 7. The Figure 6 shows the parallel co-ordinate plot obtained

for the top 10 features after classification.

Moreover, the time required for classification is quite low. The training time was

found to be 2.8234s with prediction rate of 26000 obs/s. The same is listed in Table 3.

The presented model is compared with some of the state-of-the-art methods in Table245
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Figure 6: Parallel coordinate plots of normal (blue) and PD (orange) class.

9 and it is observed to be performing better than most of the previously implemented

methods.

Following are the salient features of the proposed method:

• The method uses OBWFB for carrying out wavelet decomposition.

• We have studied the performance of wavelet domain (RE and Ĥ ) and time250

domain (ρ) features. The feature RE shows significant performance giving a

performance accuracy > 99%. Further, the method also observes significant con-

tributions from the other two features.

• Feature ranking algorithm using class separability criterion is implemented to

evaluate performance of the features.255

• We have examined the progressive contribution of features with and without con-

sidering the feature ranking.

• The method does not have any data dependency.
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This method can be considered as an effective tool for PD diagnosis but, it has the

following limitations:260

• Modelling of support vector machine is a time-consuming process.

• The classification requires large training samples. Memory requirements in-

crease with the increase in data.

7. Conclusions

In this paper, we have proposed a hybrid time-wavelet domain method to diag-265

nose PD disease using multi-channel EEG signals. We have explored the effect of

multidomain features on the classification accuracy. Three features were extracted, in

which the features RE and Ĥ were extracted in the wavelet domain, whereas, ρ was

extracted in the time domain.The feature ρ was successfully found to be extracting the

inter-channel self-similarities. Whereas, the performance of the RE and Ĥ in wavelet270

domain was found to be incremented by the employment of the quadrature bandpass

filter coefficients. The wavelet decomposition was carried out using a set of optimal

biorthogonal filters. The classification was carried out using support vector machines

of polynomial degrees three (CSVM). 10-fold cross validation was exercised in order to

reduce the problem of over-fitting. The method gives promising results with the classi-275

fication accuracy of 99.56%. We have evaluated the performance of individual features.

The Rényi entropy extracted in wavelet domain was found to be the most promising

feature. Further, the features were combined and their progressive performances were

studied.

The propounded method provides competitive classification accuracy, which is nec-280

essary while the diagnosis of a disease in a person and hence, this method is an efficient

model which can be used for diagnosis of PD using EEG signals. Further, we intend to

implement this methodology for early-stage detection of diseases like epilepsy, sleep

disorder etc.
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