Accelerating Gradient-based Meta Learner

Varad Pimpalkhute
IIT Nagpur
India
pimpalkhutevarad@gmail.com

ABSTRACT

Meta Learning has been in focus in recent years due to the meta-
learner model’s ability to adapt well and generalize to new tasks,
thus, reducing both the time and data requirements for learning.
However, a major drawback of meta learner is that, to reach to a
state from where learning new tasks becomes feasible with less
data, it requires a large number of iterations and a lot of time. We
address this issue by proposing various acceleration techniques to
speed up meta learning algorithms such as MAML (Model Agnostic
Meta Learning). We present 3.73X acceleration on a well known
RNN optimizer based meta learner proposed in literature [11]. We
introduce a novel method of training tasks in clusters, which not
only accelerates the meta learning process but also improves model
accuracy performance.

KEYWORDS

Meta learning, RNN optimizer, AGI, Performance optimization

1 INTRODUCTION

Artificial general intelligence (AGI) is a hypothetical concept where
machines are capable of learning and thinking like humans. Meta
learning also known as learning to learn, brings us one step closer
to achieve AGI by learning on a task in a manner similar to humans.
To give an analogy, in Meta-learning paradigm, a distribution of
related tasks (say racket sports: Badminton, Tennis etc.) are used
to train a model (human) which can use this "experience” to learn
any new task (Squash) with lesser amount of data (lesser practice
of Squash than a person who doesn’t know any racket sport) and
in lesser time.

The meta learning algorithms, like MAML [2] (and others [8,
10, 11]), are time and compute intensive. These algorithms require
a lot of iterations over the available tasks (60000 [2]) to make a
model converge and be ready to learn a new task quickly with good
accuracy.

In this paper, we present our ongoing work involving several
performance optimization techniques to reduce the training time
of metalearning algorithms. We will discuss these techniques in the
context of acceleration of a gradient based meta learner proposed
in [11]. A gradient based meta learner learns how gradients change
during gradient descent based optimizations of various learning
tasks (learning task involves training a model). The goal is to enable
rapid model parameter updates (faster than optimizers like SGD,
ADAM, RMSProp) after each learning iteration .

The gradient based meta learner which is our focus in this paper
employs a Hierarchical RNN 2 architecture to ensembles the loss

! There are other approaches of meta learning too, namely, metric based and loss based
meta learners [4].
2RNN: Recurrent Neural Network

Amey Pandit, Mayank Mishra, Rekha Singhal
TCS Research
India

amey.pandit@tcs.com,mishra.m@tcs.com,rekha.singhal@tcs.com

5 6 Gradient Calculation 7 RMS Prop
Fed after losses for Z Lk fn for Hi. RNN G S
all batches are k parameters Gradi
radients
available
-
,’ \‘ Parameter
I Meta Loop !
\ ’
Losses per batch "-_—-”
Gradients
Task Parameters’
Gradient Calculation 4
A4
2| \Loss calculation -~
Cd ~
X for data batch rd (N
Dataset for Task/ ry I 1
[(batch1 || 4 - | Task Loop !
[ﬁ Task i \ ,’
atc ~
——— [(model) S’
[batchn | Parameters
Parameter
Updates for - .
Fed batch by batch task Hierarchical RNN

Optimizer

Figure 1: Meta-training on a single task using a Hierarchical
RNN-based optimizer.

1 Begn
2

| Train meta learner for | meta iterations |<—
v

3 | For every taskTi
L]
4 | Train TaskTi for N epochs

eta meta iterations
Remaining?

Figure 2: Earlier Proposed approach in the paper

landscapes of various small tasks. Figure 1 shows how this meta
learner learnt from a single task’s training process (the same is
repeated for every task). There are two learning loops: a) Task loop
- which updates the task parameters for every batch of data using
hierarchical RNN as optimizer; and b) Meta loop - which updates
the parameters of RNN optimizer itself using loss accumulated
across all batches of task learning using a RMSProp optimizer. This
process is repeated multiple times (N epochs) for each task and
sequentially for every task available in a single meta iteration. Large
number of such meta iterations are required to let Hierarchical RNN
based meta optimizer converge.

Figure 2 shows the sequential nature of the meta training ap-
proach and the iterations involved using a flow-chart. We improved

on the model performance by introducing a better and wider meta-
optimization pipeline, which incorporates the optimizer parameters
being learned in form of task clusters. We achieved a speedup of
more than 2x with our proposed approach and overall speedup of
3.73x by also incorporating several coding related optimizations.

The rest of the paper is structured as follows: We briefly discuss
the previous related work in the field of meta learning and acceler-
ations in Section 2. We revisit definition of tasks in Section 3. We
propose the approaches for accelerating Hierarchical RNN in Sec-
tion 4. We verify and discuss the effectiveness of our experiments
in Section 5. Finally, we discuss the ongoing work in Section 6 and
conclude the paper in Section 7.

2 RELATED WORK

Gradient based meta-learners proposed in literature [3, 5, 6, 8] have
worked on improving model accuracy. However, very little work
has been done on improving the training time of the meta learner,
where meta-learner especially MAML is a time hungry algorithm.

Gradient descent on the meta-parameters (w) involves comput-
ing second-order derivatives or a simplified and cheaper first order
implementation [2, 7, 9]. [9] proposes ANIL which makes use of
feature reuse for few-shot learning. ANIL simplifies on MAML by
using almost no inner loop; thus being more computationally effi-
cient than MAML, getting a speed up as high as 1.8x. [7] focuses
on decreasing the computations and memory by not unrolling a
computational graph or calculating any second derivatives. [1] pro-
pose a distributed framework to accelerate the learning process of
MAML.

In this work, we also aim to accelerate the learning process by
proposing various optimization techniques. Contrary to the above
approaches (which involve changing the mathematical model or
framework), our approach is more intuitive and less complex.

3 TASKS PREPARATION FOR META
LEARNING

The Hierarchical RNN based meta learner work proposed in [11]
which we intend to accelerate is designed to be an optimizer with
rapid updates. Consequently, it becomes important that the opti-
mizer should work for any model, may it be CNN, Fully connected,
RNN, logistic regression, etc. Thus, optimizer is trained to give
rapid updates by training it on various instances of these models.
The instance of a model is considered as task. The diversity of
tasks helps in generalizing the model well to new tasks. Datasets
to train the task (model) are generated by following the approach
mentioned in paper.

4 PROPOSED APPROACHES FOR
ACCELERATION

The approaches we tried for speeding up Hierarchical RNN based
meta learner can be divided into two categories A) Algorithmic
optimizations, and B) Program optimizations, as shown in Figure 3.

We focus on discussions of Algorithmic optimizations performed
in this section, while limiting the discussion around program opti-
mizations tried in experiments section as they are mostly straight-
forward and simple to understand.

‘ Accelerating Meta Learning |

‘ Algorithmic Program (code)
L Optimizations Optimizations

Updating Frameworks/Libraries

Parallelization of Task loop for
data batches.

Cythonize Code

Clustering similar tasks together
and parallelizing meta-learning
across clusters

Vectorization of Arrays

QOperation Fusion

Figure 3: Performance optimizations experimented on RNN
optimizer based meta learner

4.1 Parallelization inside Task Loop

The task-loop shown in Figures 1 and 2 involved training over
multiple batches of data sequentially. Instead of training over data
batches sequentially we train over multiple batches in parallel. We
calculate each batch’s loss and parameter gradients and then calcu-
late average of individual parameter’s gradients. Finally, updating
the task parameters using these averaged parameter gradients. The
updated model is used in the next iteration. The degree of paral-
lelism is configurable and depends on the underlying hardware.

4.2 Considering tasks in clusters and training
clusters parallely

Although, meta learning approaches employ similar tasks for train-
ing the meta learner to begin with, some tasks in the task set are
more similar to each other than other tasks. For example, a softmax
regression task will be more similar to other softmax regression
tasks in terms of how gradients get updated in each optimisation
step than task which involves training a fully connected neural
network. The Hierarchical RNN based meta optimizer approach
doesn’t differentiate between such tasks and while meta training
the "sequence” of tasks is randomly chosen.

We grouped the tasks into clusters® depending on their similarity
with each other and then we performed meta training across these
clusters parallely. The Hierarchical RNN optimizer’s parameters
were updated by using the averaged parameter gradients across
these clusters. This iteration of meta training parallely over the clus-
ters is repeated for a number of times (number of meta-iterations is
user defined). To properly utilise the underlying hardware and en-
suring that no one branch of parallelization becomes bottleneck and
takes too long we group clusters into cluster groups and schedule
cluster groups as shown in Figure 4.

The approach is that all cluster-groups should take similar time
for meta learning iteration. Figure 4 shows 5 task clusters contain-
ing similar tasks namely Softmax Regression, Quadratic problems,
2D problems, Bowl problems, and Fully connected problems are
scheduled as two cluster groups.

Figure 5 gives the complete picture of the algorithmic optimiza-
tion we performed in form of a flow chart. The original sequential
pipeline of meta training mentioned in flowchart of Figure 2 has
been broadened by introducing parallelizations in task loop (box
3There are various ways to create clusters of tasks. Thus for simplicity, we consider

creation of clusters as a black box which returns k clusters, each cluster having similar
tasks.

Start of Training

[A)
Bowl
Softmax ‘ ‘ Problems
Regression jﬁ
Problems ;
Processor = Processor
1 o2
Quadratic
Problems Fully
v Connected
Problems
D
Problems

| End of Training ‘

Figure 4: Optimal grouping of task clusters as both the
branches are of equal length.

1 Begin_ O
2
| Train meta learner for | meta iterations I‘i

3 IA Create task-clusters I

4
¥
IA Select group of task-clusters to train in parallel I
¥ ¥
5 | Task-cluster group 1 Training | | Task-cluster group k Training |
¥
6 For every task-clustercin e For every task-clustercin .
A task-clustergroup 1 task-cluster group k
v v
7 For every task Tiin task For every task Tiin task
cluster cluster
X I
A TaskTitraining for N Task Ti training for N
8 epochs. In every epoch epochs. In every epoch

data batches are data batches are

trained upon parallely.

trained upon parallely.

More Tasks
Remaining?

More Tasks Yes
Remaining?

No
ask cluster Yes
remaining?

remaining?
v No v No
11 | All task-clusters finished training |
v

ore meta iterations
Remaining?

12

13

Figure 5: Our Proposed overall approach

8 in flowchart of Figure 5) as well as across training task-cluster
(green and yellow region). The red triangles indicate the crucial
steps where we have placed our optimizations. To summarize our
acceleration approach we train all clusters parallely while learning
on the tasks in each cluster sequentially. Rest of the procedure is
similar to that followed in [11].

5 RESULTS & DISCUSSION

In this section, we perform experiments to verify the effectiveness
of proposed acceleration techniques. The hardware and software
configuration employed for experiments is mentioned in Table 1.
Before performing experiments we upgraded the baseline code
available from prior work [11] to newer libraries.

We performed experiments in a resource constrained setup as
can be seen in Table 1. We believe that a higher configuration setup
will exhibit better acceleration and performance gains due to possi-
bility of higher parallelism. All the experiments are performed while
ensuring that the achieved test accuracy of 0.65 for test "task-set"
(consisting of softmax regression tasks) on base model is matched
using our proposed approach. We now present details of experi-
ments performed for each of proposed acceleration technique.

Table 1: Experiment Setup

Type of tasks Quadractic, Bowl, Fully Connected, Softmax
Regression, 2D Problems

Intel core i5 CPU @2.50GHz, 8GB RAM, 2
physical and 4-logical cores.

Windows 10 (64-bit) OS, Cython, Tensorflow,

Python, Numpy, Pandas, Scikit

Hardware Setup

Software

5.1 Acceleration achieved due to parallelism
introduced

Table 2 lists the reduction in overall execution time due to paral-
lelizations introduced. We varied the number of task clusters used
for meta training and always created 2 cluster groups to keep de-
gree of cluster training parallelization fixed at 2. This was done due
to hardware limitations of our setup. However, the improvement in
terms of time saving is encouraging. The experiments were speeded
by more than 2x (base time vs optimized time) while the accuracy
achieved on test task set remained same.

Table 2: Clustering of tasks for Meta Training.

Num Clusters Base Time (in sec) Optimized Time (in sec)
2 1450.15 826.53

3 6313.8 2977.83

4 11361.3 4918.31

5 21932.75 12473.1

We also introduced program and code level changes mentioned
in Figure 3. Next we discuss what changes were made and how they
improved the performance.

5.2 Program and Code Optimizations

There are several straight forward optimization like upgrading the
libraries and platforms used in the available code. For example,
upgrading python itself resulted in 15% speedup. However, to our
surprise upgrading Tensorflow Library didn’t result in any speedup.

® Library Upgrade @ Algorithm Optimization
® Cythonization ® Baseline

Code Optimization

1.5 L ——
e 2

1.4
513
3
&1.2
@

1.1 (

B

([SR W A D S ——

5 10 15 20 25 30 35
Number of Problems

Figure 6: Comparison of trend in speed up for optimization
techniques.

® Speedup @ Baseline

4.5
3.5
5
=]
= 25
153
73
=N
©n
1.5
@ ¢ el e i — e— =) ¢ m— G —
0.5
5 10 15 20 25 30 35

Number of Problems

Figure 7: Trend in overall speed up as number of tasks meta
trained on are increased.

We also used vector instructions inside of loops using Numpy
arrays and removed redundant code by fusing some of the opera-
tions performed, put together these Code Optimizations resulted in
1.1X performance improvement. Cythoning the code (converting
Python code to C) shows the most promising results with an aver-
age speed up of 1.33x. The impact of these individual optimizations
is presented as graph in Figure 6. We varied the number of tasks
from 5 to 35 as shown in X-axis. This variation resulted in different
number of task clusters being formed with different number of
tasks in them, thus, covering wider range of scenarios.

Finally, we combined all the optimizations to get a speed up of
3.73x. Figure 7 presents the trend in variation in speed up as the
number of tasks being meta trained on are increased. Initially, with
lesser number of tasks, the performance curve shows improvement
in performance reaching upto 4x and later stabilizing at 3.73x.

6 ON-GOING AND FUTURE WORK

We are experimenting with different ways and granularities in
which the task clusters can be created. We believe grouping similar
tasks together in clusters and training meta learner over them
will result in faster convergence than without clustering. This is
because the the gradient updates for tasks in same cluster will be
more similar to each other.

We are also experimenting whether sequence in which tasks-
cluster are used for meta-learning has impact on convergence time
of meta learning. A simple analogy from racket sports is that a

person good at Racket-ball will find it easier to learn Squash as

compared to Tennis 4.

We also experimented replacing GRU cells used in Hierarchical
RNN optitimizer with LSTM in hope of achiving convergence with
lesser number of meta iterations. Although, the convergence hap-
pened in lesser number of iterations than when GRU cells were
used, the time per iteration increased considerably, thus, nullifying
the gains. We shelved this idea for future.

7 CONCLUSIONS

We presented our on-going work involving acceleration of a Hier-
archical RNN based meta learner proposed in [11]. We changed the
sequential meta learning pipeline discussed in paper to a parallel
pipeline by introducing parallizations inside training of the tasks
as well as across clusters of tasks. We also introduced grouping of
tasks clusters for better scheduling.

Apart from introducing wider metalearning pipeline we also
introduced certain program and code level optimizations. Put to-
gether the proposed techniques resulted in a 3.73X speed-up of the
meta-learning algorithm.

REFERENCES

[1] JanBollenbacher, Florian Soulier, Beate Rhein, and Laurenz Wiskott. 2020. Investi-

gating Parallelization of MAML. In Discovery Science, Annalisa Appice, Grigorios

Tsoumakas, Yannis Manolopoulos, and Stan Matwin (Eds.). Springer International

Publishing, Cham, 294-306.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-Agnostic Meta-

Learning for Fast Adaptation of Deep Networks. CoRR abs/1703.03400 (2017).

arXiv:1703.03400 http://arxiv.org/abs/1703.03400

[3] L. Franceschi, P. Frasconi, Saverio Salzo, Riccardo Grazzi, and M. Pontil. 2018.
Bilevel Programming for Hyperparameter Optimization and Meta-Learning.
ArXiv abs/1806.04910 (2018).

[4] Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. 2020.
Meta-learning in neural networks: A survey. arXiv preprint arXiv:2004.05439
(2020).

[5] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. 2019.
Meta-Learning With Differentiable Convex Optimization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[6] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. 2017.
Meta-Learning with Temporal Convolutions. CoRR abs/1707.03141 (2017).
arXiv:1707.03141 http://arxiv.org/abs/1707.03141

[7] Alex Nichol, Joshua Achiam, and John Schulman. 2018. On First-Order Meta-
Learning Algorithms. CoRR abs/1803.02999 (2018). arXiv:1803.02999 http://arxiv.
org/abs/1803.02999

[8] Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. 2020. Rapid

Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML.

In 8th International Conference on Learning Representations, ICLR 2020, Addis

Ababa, Ethiopia, April 26-30, 2020. OpenReview.net. https://openreview.net/

forum?id=rkgMkCEtPB

S. Ravi and H. Larochelle. 2017. Optimization as a Model for Few-Shot Learning.

In International Conference on Learning Representations.

Jake Snell, Kevin Swersky, and Richard S. Zemel. 2017. Prototypical Networks

for Few-shot Learning. CoRR abs/1703.05175 (2017). arXiv:1703.05175 http:

//arxiv.org/abs/1703.05175

Olga Wichrowska, Niru Maheswaranathan, Matthew W. Hoffman, Sergio Gomez

Colmenarejo, Misha Denil, Nando de Freitas, and Jascha Sohl-Dickstein. 2017.

Learned Optimizers that Scale and Generalize. In Proceedings of the 34th Interna-

tional Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11

August 2017 (Proceedings of Machine Learning Research, Vol. 70), Doina Precup

and Yee Whye Teh (Eds.). PMLR, 3751-3760. http://proceedings.mlr.press/v70/

wichrowskal7a.html

—_
o,

[

[10

[11

“In Squash, Racket-ball the ball bounces back from the wall and both players are on
same court, whereas, in Tennis the courts are different.

https://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1703.03400
https://arxiv.org/abs/1707.03141
http://arxiv.org/abs/1707.03141
https://arxiv.org/abs/1803.02999
http://arxiv.org/abs/1803.02999
http://arxiv.org/abs/1803.02999
https://openreview.net/forum?id=rkgMkCEtPB
https://openreview.net/forum?id=rkgMkCEtPB
https://arxiv.org/abs/1703.05175
http://arxiv.org/abs/1703.05175
http://arxiv.org/abs/1703.05175
http://proceedings.mlr.press/v70/wichrowska17a.html
http://proceedings.mlr.press/v70/wichrowska17a.html

	Abstract
	1 Introduction
	2 Related Work
	3 Tasks Preparation for meta learning
	4 Proposed Approaches for Acceleration
	4.1 Parallelization inside Task Loop
	4.2 Considering tasks in clusters and training clusters parallely

	5 Results & Discussion
	5.1 Acceleration achieved due to parallelism introduced
	5.2 Program and Code Optimizations

	6 on-going and future work
	7 conclusions
	References

