Accelerating Gradient-based Meta Learner

Published in International Conference on Performance Engineering, 2021

Work under submission, more details will be shared once published.

Meta Learning has been in focus in recent years due to the meta-learner model’s ability to adapt well and generalize to new tasks, thus, reducing both the time and data requirements for learning. However, a major drawback of meta learner is that, to reach to a state from where learning new tasks becomes feasible with less data, it requires a large number of iterations and a lot of time. We address this issue by proposing various acceleration techniques to speed up meta learning algorithms such as MAML (Model Agnostic Meta Learning). We present 3.73X acceleration on a well known RNN optimizer based meta learner proposed in literature [11]. We introduce a novel method of training tasks in clusters, which not only accelerates the meta learning process but also improves model accuracy performance.

Additional Materials: to be updated soon…

Leave a Comment